A003593 Numbers of the form 3^i*5^j with i, j >= 0.
1, 3, 5, 9, 15, 25, 27, 45, 75, 81, 125, 135, 225, 243, 375, 405, 625, 675, 729, 1125, 1215, 1875, 2025, 2187, 3125, 3375, 3645, 5625, 6075, 6561, 9375, 10125, 10935, 15625, 16875, 18225, 19683, 28125, 30375, 32805, 46875, 50625, 54675, 59049
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
GAP
Filtered([1..60000],n->PowerMod(15,n,n)=0); # Muniru A Asiru, Mar 19 2019
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a003593 n = a003593_list !! (n-1) a003593_list = f (singleton 1) where f s = m : f (insert (3*m) $ insert (5*m) s') where (m,s') = deleteFindMin s -- Reinhard Zumkeller, Sep 13 2011
-
Magma
[n: n in [1..60000] | PrimeDivisors(n) subset [3,5]]; // Bruno Berselli, Sep 24 2012
-
Maple
isA003593 := proc(n) if n = 1 then true; else return (numtheory[factorset](n) minus {3, 5} = {} ); end if; end proc: A003593 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if isA003593(a) then return a; end if; end do: end if; end proc: seq(A003593(n),n=1..30) ; # R. J. Mathar, Aug 04 2016
-
Mathematica
fQ[n_] := PowerMod[15, n, n] == 0; Select[Range[60000], fQ] (* Bruno Berselli, Sep 24 2012 *)
-
PARI
list(lim)=my(v=List(),N);for(n=0,log(lim)\log(5),N=5^n;while(N<=lim,listput(v,N);N*=3));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
-
PARI
is(n)=n==3^valuation(n,3)*5^valuation(n,5) \\ Charles R Greathouse IV, Apr 23 2013
-
Python
from sympy import integer_log def A003593(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(integer_log(x//5**i,3)[0]+1 for i in range(integer_log(x,5)[0]+1)) return bisection(f,n,n) # Chai Wah Wu, Oct 22 2024
Formula
a(n) ~ 1/sqrt(15)*exp(sqrt(2*log(3)*log(5)*n)) asymptotically. - Benoit Cloitre, Jan 22 2002
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(15*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
Sum_{n>=1} 1/a(n) = (3*5)/((3-1)*(5-1)) = 15/8. - Amiram Eldar, Sep 22 2020
Comments