cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003600 Maximal number of pieces obtained by slicing a torus (or a bagel) with n cuts: (n^3 + 3*n^2 + 8*n)/6 (n > 0).

Original entry on oeis.org

1, 2, 6, 13, 24, 40, 62, 91, 128, 174, 230, 297, 376, 468, 574, 695, 832, 986, 1158, 1349, 1560, 1792, 2046, 2323, 2624, 2950, 3302, 3681, 4088, 4524, 4990, 5487, 6016, 6578, 7174, 7805, 8472, 9176, 9918, 10699, 11520, 12382, 13286, 14233, 15224
Offset: 0

Views

Author

Keywords

Comments

Both the bagel and the torus are solid (apart from the hole in the middle, of course)! - N. J. A. Sloane, Oct 03 2012

References

  • M. Gardner, The 2nd Scientific American Book of Mathematical Puzzles and Diversions. Simon and Schuster, NY, 1961. See Chapter 13. (See pages 113-116 in the English edition published by Pelican Books in 1966.)
  • Clifford A. Pickover, Computers and the Imagination, St. Martin's Press, NY, 1991, pp. 373-374 and Plate 27.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000124 (slicing a pancake), A000125 (a cake).
Cf. A004148.

Programs

  • Magma
    I:=[1, 2, 6, 13, 24]; [n le 5 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 29 2012
    
  • Mathematica
    CoefficientList[Series[(1-2*x+4*x^2-3*x^3+x^4)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 29 2012 *)
    LinearRecurrence[{4,-6,4,-1},{1,2,6,13,24},50] (* Harvey P. Dale, Oct 22 2016 *)
  • PARI
    a(n)=if(n,n*(n^2+3*n+8)/6,1) \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = binomial(n+2, n-1) + binomial(n, n-1).
a(n) = coefficient of z^3 in the series expansion of G^n (n>0), where G=[1-z+z^2-sqrt(1-2z-z^2-2z^3+z^4)]/(2z^2) is the g.f. of A004148 (secondary structures of RNA molecules). - Emeric Deutsch, Jan 11 2004
Binomial transform of [1, 1, 3, 0, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Nov 08 2007
G.f.: (1 - 2*x + 4*x^2 - 3*x^3 + x^4) / (1 - x)^4. - Colin Barker, Jun 28 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 29 2012
a(n) = A108561(n+4,3) for n > 0. - Reinhard Zumkeller, Jun 10 2005
a(n) = A000292(n+1) - A000124(n) for n > 0. - Torlach Rush, Aug 04 2018
a(n) = A000125(n+1) - 2, as one can see by thinking of the donut hole as a slit in a cake, i.e. an (n+1)st cut in the cake that doesn't quite reach the edges of the cake and so leaves two pieces unseparated. - Glen Whitney, Mar 31 2019
E.g.f.: 1 + exp(x)*x*(12 + 6*x + x^2)/6. - Stefano Spezia, Apr 19 2025

Extensions

More terms from James Sellers, Aug 22 2000