cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A000124 Central polygonal numbers (the Lazy Caterer's sequence): n(n+1)/2 + 1; or, maximal number of pieces formed when slicing a pancake with n cuts.

Original entry on oeis.org

1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 277, 301, 326, 352, 379, 407, 436, 466, 497, 529, 562, 596, 631, 667, 704, 742, 781, 821, 862, 904, 947, 991, 1036, 1082, 1129, 1177, 1226, 1276, 1327, 1379
Offset: 0

Views

Author

Keywords

Comments

These are Hogben's central polygonal numbers with the (two-dimensional) symbol
2
.P
1 n
The first line cuts the pancake into 2 pieces. For n > 1, the n-th line crosses every earlier line (avoids parallelism) and also avoids every previous line intersection, thus increasing the number of pieces by n. For 16 lines, for example, the number of pieces is 2 + 2 + 3 + 4 + 5 + ... + 16 = 137. These are the triangular numbers plus 1 (cf. A000217).
m = (n-1)(n-2)/2 + 1 is also the smallest number of edges such that all graphs with n nodes and m edges are connected. - Keith Briggs, May 14 2004
Also maximal number of grandchildren of a binary vector of length n+2. E.g., a binary vector of length 6 can produce at most 11 different vectors when 2 bits are deleted.
This is also the order dimension of the (strong) Bruhat order on the finite Coxeter group B_{n+1}. - Nathan Reading (reading(AT)math.umn.edu), Mar 07 2002
Number of 132- and 321-avoiding permutations of {1,2,...,n+1}. - Emeric Deutsch, Mar 14 2002
For n >= 1 a(n) is the number of terms in the expansion of (x+y)*(x^2+y^2)*(x^3+y^3)*...*(x^n+y^n). - Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 28 2003
Also the number of terms in (1)(x+1)(x^2+x+1)...(x^n+...+x+1); see A000140.
Narayana transform (analog of the binomial transform) of vector [1, 1, 0, 0, 0, ...] = A000124; using the infinite lower Narayana triangle of A001263 (as a matrix), N; then N * [1, 1, 0, 0, 0, ...] = A000124. - Gary W. Adamson, Apr 28 2005
Number of interval subsets of {1, 2, 3, ..., n} (cf. A002662). - Jose Luis Arregui (arregui(AT)unizar.es), Jun 27 2006
Define a number of straight lines in the plane to be in general arrangement when (1) no two lines are parallel, (2) there is no point common to three lines. Then these are the maximal numbers of regions defined by n straight lines in general arrangement in the plane. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
Note that a(n) = a(n-1) + A000027(n-1). This has the following geometrical interpretation: Suppose there are already n-1 lines in general arrangement, thus defining the maximal number of regions in the plane obtainable by n-1 lines and now one more line is added in general arrangement. Then it will cut each of the n-1 lines and acquire intersection points which are in general arrangement. (See the comments on A000027 for general arrangement with points.) These points on the new line define the maximal number of regions in 1-space definable by n-1 points, hence this is A000027(n-1), where for A000027 an offset of 0 is assumed, that is, A000027(n-1) = (n+1)-1 = n. Each of these regions acts as a dividing wall, thereby creating as many new regions in addition to the a(n-1) regions already there, hence a(n) = a(n-1) + A000027(n-1). Cf. the comments on A000125 for an analogous interpretation. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
When constructing a zonohedron, one zone at a time, out of (up to) 3-d non-intersecting parallelepipeds, the n-th element of this sequence is the number of edges in the n-th zone added with the n-th "layer" of parallelepipeds. (Verified up to 10-zone zonohedron, the enneacontahedron.) E.g., adding the 10th zone to the enneacontahedron requires 46 parallel edges (edges in the 10th zone) by looking directly at a 5-valence vertex and counting visible vertices. - Shel Kaphan, Feb 16 2006
Binomial transform of (1, 1, 1, 0, 0, 0, ...) and inverse binomial transform of A072863: (1, 3, 9, 26, 72, 192, ...). - Gary W. Adamson, Oct 15 2007
If Y is a 2-subset of an n-set X then, for n >= 3, a(n-3) is the number of (n-2)-subsets of X which do not have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
Equals row sums of triangle A144328. - Gary W. Adamson, Sep 18 2008
It appears that a(n) is the number of distinct values among the fractions F(i+1)/F(j+1) as j ranges from 1 to n and, for each fixed j, i ranges from 1 to j, where F(i) denotes the i-th Fibonacci number. - John W. Layman, Dec 02 2008
a(n) is the number of subsets of {1,2,...,n} that contain at most two elements. - Geoffrey Critzer, Mar 10 2009
For n >= 2, a(n) gives the number of sets of subsets A_1, A_2, ..., A_n of n = {1, 2, ..., n} such that Meet_{i = 1..n} A_i is empty and Sum_{j in [n]} (|Meet{i = 1..n, i != j} A_i|) is a maximum. - Srikanth K S, Oct 22 2009
The numbers along the left edge of Floyd's triangle. - Paul Muljadi, Jan 25 2010
Let A be the Hessenberg matrix of order n, defined by: A[1,j] = A[i,i]:=1, A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n >= 1, a(n-1) = (-1)^(n-1)*coeff(charpoly(A,x),x). - Milan Janjic, Jan 24 2010
Also the number of deck entries of Euler's ship. See the Meijer-Nepveu link. - Johannes W. Meijer, Jun 21 2010
(1 + x^2 + x^3 + x^4 + x^5 + ...)*(1 + 2x + 3x^2 + 4x^3 + 5x^4 + ...) = (1 + 2x + 4x^2 + 7x^3 + 11x^4 + ...). - Gary W. Adamson, Jul 27 2010
The number of length n binary words that have no 0-digits between any pair of consecutive 1-digits. - Jeffrey Liese, Dec 23 2010
Let b(0) = b(1) = 1; b(n) = max(b(n-1)+n-1, b(n-2)+n-2) then a(n) = b(n+1). - Yalcin Aktar, Jul 28 2011
Also number of triangular numbers so far, for n > 0: a(n) = a(n-1) + Sum(A010054(a(k)): 0 <= k < n), see also A097602, A131073. - Reinhard Zumkeller, Nov 15 2012
Also number of distinct sums of 1 through n where each of those can be + or -. E.g., {1+2,1-2,-1+2,-1-2} = {3,-1,1,-3} and a(2) = 4. - Toby Gottfried, Nov 17 2011
This sequence is complete because the sum of the first n terms is always greater than or equal to a(n+1)-1. Consequently, any nonnegative number can be written as a sum of distinct terms of this sequence. See A204009, A072638. - Frank M Jackson, Jan 09 2012
The sequence is the number of distinct sums of subsets of the nonnegative integers, and its first differences are the positive integers. See A208531 for similar results for the squares. - John W. Layman, Feb 28 2012
Apparently the number of Dyck paths of semilength n+1 in which the sum of the first and second ascents add to n+1. - David Scambler, Apr 22 2013
Without 1 and 2, a(n) equals the terminus of the n-th partial sum of sequence 1, 1, 2. Explanation: 1st partial sums of 1, 1, 2 are 1, 2, 4; 2nd partial sums are 1, 3, 7; 3rd partial sums are 1, 4, 11; 4th partial sums are 1, 5, 16, etc. - Bob Selcoe, Jul 04 2013
Equivalently, numbers of the form 2*m^2+m+1, where m = 0, -1, 1, -2, 2, -3, 3, ... . - Bruno Berselli, Apr 08 2014
For n >= 2: quasi-triangular numbers; the almost-triangular numbers being A000096(n), n >= 2. Note that 2 is simultaneously almost-triangular and quasi-triangular. - Daniel Forgues, Apr 21 2015
n points in general position determine "n choose 2" lines, so A055503(n) <= a(n(n-1)/2). If n > 3, the lines are not in general position and so A055503(n) < a(n(n-1)/2). - Jonathan Sondow, Dec 01 2015
The digital root is period 9 (1, 2, 4, 7, 2, 7, 4, 2, 1), also the digital roots of centered 10-gonal numbers (A062786), for n > 0, A133292. - Peter M. Chema, Sep 15 2016
Partial sums of A028310. - J. Conrad, Oct 31 2016
For n >= 0, a(n) is the number of weakly unimodal sequences of length n over the alphabet {1, 2}. - Armend Shabani, Mar 10 2017
From Eric M. Schmidt, Jul 17 2017: (Start)
Number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) < e(j) != e(k). [Martinez and Savage, 2.4]
Number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) < e(j) and e(i) < e(k). [Martinez and Savage, 2.4]
Number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) >= e(j) != e(k). [Martinez and Savage, 2.4]
(End)
Numbers m such that 8m - 7 is a square. - Bruce J. Nicholson, Jul 24 2017
From Klaus Purath, Jan 29 2020: (Start)
The odd prime factors != 7 occur in an interval of p successive terms either never or exactly twice, while 7 always occurs only once. If a prime factor p appears in a(n) and a(m) within such an interval, then n + m == -1 (mod p). When 7 divides a(n), then 2*n == -1 (mod 7). a(n) is never divisible by the prime numbers given in A003625.
While all prime factors p != 7 can occur to any power, a(n) is never divisible by 7^2. The prime factors are given in A045373. The prime terms of this sequence are given in A055469.
(End)
From Roger Ford, May 10 2021: (Start)
a(n-1) is the greatest sum of arch lengths for the top arches of a semi-meander with n arches. An arch length is the number of arches covered + 1.
/\ The top arch has a length of 3. /\ The top arch has a length of 3.
/ \ Both bottom arches have a //\\ The middle arch has a length of 2.
//\/\\ length of 1. ///\\\ The bottom arch has a length of 1.
Example: for n = 4, a(4-1) = a(3) = 7 /\
//\\
/\ ///\\\ 1 + 3 + 2 + 1 = 7. (End)
a(n+1) is the a(n)-th smallest positive integer that has not yet appeared in the sequence. - Matthew Malone, Aug 26 2021
For n> 0, let the n-dimensional cube {0,1}^n be, provided with the Hamming distance, d. Given an element x in {0,1}^n, a(n) is the number of elements y in {0,1}^n such that d(x, y) <= 2. Example: n = 4. (0,0,0,0), (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (0,0,1,1), (0,1,0,1), (0,1,1,0), (1,0,0,1), (1,0,1,0), (1,1,0,0) are at distance <= 2 from (0,0,0,0), so a(4) = 11. - Yosu Yurramendi, Dec 10 2021
a(n) is the sum of the first three entries of row n of Pascal's triangle. - Daniel T. Martin, Apr 13 2022
a(n-1) is the number of Grassmannian permutations that avoid a pattern, sigma, where sigma is a pattern of size 3 with exactly one descent. For example, sigma is one of the patterns, {132, 213, 231, 312}. - Jessica A. Tomasko, Sep 14 2022
a(n+4) is the number of ways to tile an equilateral triangle of side length 2*n with smaller equilateral triangles of side length n and side length 1. For example, with n=2, there are 22 ways to tile an equilateral triangle of side length 4 with smaller ones of sides 2 and 1, including the one tiling with sixteen triangles of sides 1 and the one tiling with four triangles of sides 2. - Ahmed ElKhatib and Greg Dresden, Aug 19 2024
Define a "hatpin" to be the planar graph consisting of a distinguished point (called the "head") and a semi-infinite line from that point. The maximum number of regions than can be formed by drawing n hatpins is a(n-1). See link for the case n = 4. - N. J. A. Sloane, Jun 25 2025

Examples

			a(3) = 7 because the 132- and 321-avoiding permutations of {1, 2, 3, 4} are 1234, 2134, 3124, 2314, 4123, 3412, 2341.
G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 11*x^4 + 16*x^5 + 22*x^6 + 29*x^7 + ...
		

References

  • Robert B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 24.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 80.
  • Henry Ernest Dudeney, Amusements in Mathematics, Nelson, London, 1917, page 177.
  • Derrick Niederman, Number Freak, From 1 to 200 The Hidden Language of Numbers Revealed, A Perigee Book, NY, 2009, p. 83.
  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
  • Alain M. Robert, A Course in p-adic Analysis, Springer-Verlag, 2000; p. 213.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane, On single-deletion-correcting codes, in Codes and Designs (Columbus, OH, 2000), 273-291, Ohio State Univ. Math. Res. Inst. Publ., 10, de Gruyter, Berlin, 2002.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 98.
  • William Allen Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 30.
  • Akiva M. Yaglom and Isaak M. Yaglom, Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #44 (First published: San Francisco: Holden-Day, Inc., 1964).

Crossrefs

Cf. A000096 (Maximal number of pieces that can be obtained by cutting an annulus with n cuts, for n >= 1).
Slicing a cake: A000125, a bagel: A003600.
Partial sums =(A033547)/2, (A014206)/2.
The first 20 terms are also found in A025732 and A025739.
Cf. also A055469 Quasi-triangular primes, A002620, A000217.
A row of the array in A386478.

Programs

Formula

G.f.: (1 - x + x^2)/(1 - x)^3. - Simon Plouffe in his 1992 dissertation
a(n) = A108561(n+3, 2). - Reinhard Zumkeller, Jun 10 2005
G.f.: (1 - x^6)/((1 - x)^2*(1 - x^2)*(1 - x^3)). a(n) = a(-1 - n) for all n in Z. - Michael Somos, Sep 04 2006
Euler transform of length 6 sequence [ 2, 1, 1, 0, 0, -1]. - Michael Somos, Sep 04 2006
a(n+3) = 3*a(n+2) - 3*a(n+1) + a(n) and a(1) = 1, a(2) = 2, a(3) = 4. - Artur Jasinski, Oct 21 2008
a(n) = A000217(n) + 1.
a(n) = a(n-1) + n. E.g.f.:(1 + x + x^2/2)*exp(x). - Geoffrey Critzer, Mar 10 2009
a(n) = Sum_{k = 0..n + 1} binomial(n+1, 2(k - n)). - Paul Barry, Aug 29 2004
a(n) = binomial(n+2, 1) - 2*binomial(n+1, 1) + binomial(n+2, 2). - Zerinvary Lajos, May 12 2006
From Thomas Wieder, Feb 25 2009: (Start)
a(n) = Sum_{l_1 = 0..n + 1} Sum_{l_2 = 0..n}...Sum_{l_i = 0..n - i}...Sum_{l_n = 0..1} delta(l_1, l_2, ..., l_i, ..., l_n) where delta(l_1, l_2, ..., l_i, ..., l_n) = 0 if any l_i != l_(i+1) and l_(i+1) != 0 and delta(l_1, l_2, ..., l_i, ..., l_n) = 1 otherwise. (End)
a(n) = A034856(n+1) - A005843(n) = A000217(n) + A005408(n) - A005843(n). - Jaroslav Krizek, Sep 05 2009
a(n) = 2*a(n-1) - a(n-2) + 1. - Eric Werley, Jun 27 2011
E.g.f.: exp(x)*(1+x+(x^2)/2) = Q(0); Q(k) = 1+x/(1-x/(2+x-4/(2+x*(k+1)/Q(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
a(n) = A014132(n, 1) for n > 0. - Reinhard Zumkeller, Dec 12 2012
a(n) = 1 + floor(n/2) + ceiling(n^2/2) = 1 + A004526(n) + A000982(n). - Wesley Ivan Hurt, Jun 14 2013
a(n) = A228074(n+1, n). - Reinhard Zumkeller, Aug 15 2013
For n > 0: A228446(a(n)) = 3. - Reinhard Zumkeller, Mar 12 2014
a(n) >= A263883(n) and a(n(n-1)/2) >= A055503(n). - Jonathan Sondow, Dec 01 2015
From Ilya Gutkovskiy, Jun 29 2016: (Start)
Dirichlet g.f.: (zeta(s-2) + zeta(s-1) + 2*zeta(s))/2.
Sum_{n >= 0} 1/a(n) = 2*Pi*tanh(sqrt(7)*Pi/2)/sqrt(7) = A226985. (End)
a(n) = (n+1)^2 - A000096(n). - Anton Zakharov, Jun 29 2016
a(n) = A101321(1, n). - R. J. Mathar, Jul 28 2016
a(n) = 2*a(n-1) - binomial(n-1, 2) and a(0) = 1. - Armend Shabani, Mar 10 2017
a(n) = A002620(n+2) + A002620(n-1). - Anton Zakharov, May 11 2017
From Klaus Purath, Jan 29 2020: (Start)
a(n) = (Sum_{i=n-2..n+2} A000217(i))/5.
a(n) = (Sum_{i=n-2..n+2} A002378(i))/10.
a(n) = (Sum_{i=n..n+2} A002061(i)+1)/6.
a(n) = (Sum_{i=n-1..n+2} A000290(i)+2)/8.
a(n) = A060533(n-1) + 10, n > 5.
a(n) = (A002378(n) + 2)/2.
a(n) = A152948(n+2) - 1.
a(n) = A152950(n+1) - 2.
a(n) = (A002061(n) + A002061(n+2))/4.
(End)
Sum_{n>=0} (-1)^n/a(n) = A228918. - Amiram Eldar, Nov 20 2020
From Amiram Eldar, Feb 17 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = cosh(sqrt(15)*Pi/2)*sech(sqrt(7)*Pi/2).
Product_{n>=1} (1 - 1/a(n)) = 2*Pi*sech(sqrt(7)*Pi/2). (End)
a((n^2-3n+6)/2) + a((n^2-n+4)/2) = a(n^2-2n+6)/2. - Charlie Marion, Feb 14 2023

A000125 Cake numbers: maximal number of pieces resulting from n planar cuts through a cube (or cake): C(n+1,3) + n + 1.

Original entry on oeis.org

1, 2, 4, 8, 15, 26, 42, 64, 93, 130, 176, 232, 299, 378, 470, 576, 697, 834, 988, 1160, 1351, 1562, 1794, 2048, 2325, 2626, 2952, 3304, 3683, 4090, 4526, 4992, 5489, 6018, 6580, 7176, 7807, 8474, 9178, 9920, 10701, 11522, 12384, 13288, 14235, 15226
Offset: 0

Views

Author

Keywords

Comments

Note that a(n) = a(n-1) + A000124(n-1). This has the following geometrical interpretation: Define a number of planes in space to be in general arrangement when
(1) no two planes are parallel,
(2) there are no two parallel intersection lines,
(3) there is no point common to four or more planes.
Suppose there are already n-1 planes in general arrangement, thus defining the maximal number of regions in space obtainable by n-1 planes and now one more plane is added in general arrangement. Then it will cut each of the n-1 planes and acquire intersection lines which are in general arrangement. (See the comments on A000124 for general arrangement with lines.) These lines on the new plane define the maximal number of regions in 2-space definable by n-1 straight lines, hence this is A000124(n-1). Each of this regions acts as a dividing wall, thereby creating as many new regions in addition to the a(n-1) regions already there, hence a(n) = a(n-1) + A000124(n-1). - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
More generally, we have: A000027(n) = binomial(n,0) + binomial(n,1) (the natural numbers), A000124(n) = binomial(n,0) + binomial(n,1) + binomial(n,2) (the Lazy Caterer's sequence), a(n) = binomial(n,0) + binomial(n,1) + binomial(n,2) + binomial(n,3) (Cake Numbers). - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
If Y is a 2-subset of an n-set X then, for n>=3, a(n-3) is the number of 3-subsets of X which do not have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
a(n) is the number of compositions (ordered partitions) of n+1 into four or fewer parts or equivalently the sum of the first four terms in the n-th row of Pascal's triangle. - Geoffrey Critzer, Jan 23 2009
{a(k): 0 <= k < 4} = divisors of 8. - Reinhard Zumkeller, Jun 17 2009
a(n) is also the maximum number of different values obtained by summing n consecutive positive integers with all possible 2^n sign combinations. This maximum is first reached when summing the interval [n, 2n-1]. - Olivier Gérard, Mar 22 2010
a(n) contains only 5 perfect squares > 1: 4, 64, 576, 67600, and 75203584. The incidences of > 0 are given by A047694. - Frank M Jackson, Mar 15 2013
Given n tiles with two values - an A value and a B value - a player may pick either the A value or the B value. The particular tiles are [n, 0], [n-1, 1], ..., [2, n-2] and [1, n-1]. The sequence is the number of different final A:B counts. For example, with n=4, we can have final total [5, 3] = [4, ] + [, 1] + [, 2] + [1, ] = [, 0] + [3, ] + [2, ] + [, 3], so a(4) = 2^4 - 1 = 15. The largest and smallest final A+B counts are given by A077043 and A002620 respectively. - Jon Perry, Oct 24 2014
For n>=3, a(n) is also the number of maximal cliques in the (n+1)-triangular graph (the 4-triangular graph has a(3)=8 maximal cliques). - Andrew Howroyd, Jul 19 2017
a(n) is the number of binary words of length n matching the regular expression 1*0*1*0*. Coincidentally, A000124 counts binary words of the form 0*1*0*. See Alexandersson and Nabawanda for proof. - Per W. Alexandersson, May 15 2021
For n > 0, let the n-dimensional cube, {0,1}^n be provided with the Hamming distance, d. Given an element x in {0,1}^n, a(n) is the number of elements y in {0,1}^n such that d(x, y) <= 3. Example: n = 4. Let x = (0,0,0,0) be in {0,1}^4.
d(x,y) = 0: y in {(0,0,0,0)}.
d(x,y) = 1: y in {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)}.
d(x,y) = 2: y in {(1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1), (0,0,1,1)}.
d(x,y) = 3: y in {(1,1,1,0), (1,1,0,1), (1,0,1,1), (0,1,1,1)}.
All these y are at a distance <= 3 from (0,0,0,0), so a(4) = 15. (See Peter C. Heinig's formula). - Yosu Yurramendi, Dec 14 2021
For n >= 2, a(n) is the number of distinct least squares regression lines fitted to n points (j,y_j), 1 <= j <= n, where each y_j is 0 or 1. The number of distinct lines with exactly k 1's among y_1, ..., y_n is A077028(n,k). The number of distinct slopes is A123596(n). - Pontus von Brömssen, Mar 16 2024
The only powers of 2 in this sequence are a(0) = 1, a(1) = 2, a(2) = 4, a(3) = 8, and a(7) = 64. - Jianing Song, Jan 02 2025

Examples

			a(4)=15 because there are 15 compositions of 5 into four or fewer parts. a(6)=42 because the sum of the first four terms in the 6th row of Pascal's triangle is 1+6+15+20=42. - _Geoffrey Critzer_, Jan 23 2009
For n=5, (1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 35) and their opposite are the 26 different sums obtained by summing 5,6,7,8,9 with any sign combination. - _Olivier Gérard_, Mar 22 2010
G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 15*x^4 + 26*x^5 + 42*x^6 + 64*x^7 + ... - _Michael Somos_, Jul 07 2022
		

References

  • V. I. Arnold (ed.), Arnold's Problems, Springer, 2004, comments on Problem 1990-11 (p. 75), pp. 503-510. Numbers N_3.
  • R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 27.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 80.
  • H. E. Dudeney, Amusements in Mathematics, Nelson, London, 1917, page 177.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. H. Stickels, Mindstretching Puzzles. Sterling, NY, 1994 p. 85.
  • W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 30.
  • A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #45 (First published: San Francisco: Holden-Day, Inc., 1964)

Crossrefs

Programs

Formula

a(n) = (n+1)*(n^2-n+6)/6 = (n^3 + 5*n + 6) / 6.
G.f.: (1 - 2*x + 2x^2)/(1-x)^4. - [Simon Plouffe in his 1992 dissertation.]
E.g.f.: (1 + x + x^2/2 + x^3/6)*exp(x).
a(n) = binomial(n,3) + binomial(n,2) + binomial(n,1) + binomial(n,0). - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
Paraphrasing the previous comment: the sequence is the binomial transform of [1,1,1,1,0,0,0,...]. - Gary W. Adamson, Oct 23 2007
From Ilya Gutkovskiy, Jul 18 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = Sum_{k=0..n} A152947(k+1).
Inverse binomial transform of A134396.
Sum_{n>=0} a(n)/n! = 8*exp(1)/3. (End)
a(n) = -A283551(-n). - Michael Somos, Jul 07 2022
a(n) = A046127(n+1)/2 = A033547(n)/2 + 1. - Jianing Song, Jan 02 2025

Extensions

Minor typo in comments corrected by Mauro Fiorentini, Jan 02 2018

A108561 Triangle read by rows: T(n,0)=1, T(n,n)=(-1)^n, T(n+1,k)=T(n,k-1)+T(n,k) for 0 < k < n.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 1, -1, 1, 2, 2, 0, 1, 1, 3, 4, 2, 1, -1, 1, 4, 7, 6, 3, 0, 1, 1, 5, 11, 13, 9, 3, 1, -1, 1, 6, 16, 24, 22, 12, 4, 0, 1, 1, 7, 22, 40, 46, 34, 16, 4, 1, -1, 1, 8, 29, 62, 86, 80, 50, 20, 5, 0, 1, 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1, -1, 1, 10, 46, 128, 239, 314, 296, 200, 95, 30, 6, 0, 1, 1, 11, 56, 174, 367
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 10 2005

Keywords

Comments

Sum_{k=0..n} T(n,k) = A078008(n);
Sum_{k=0..n} abs(T(n,k)) = A052953(n-1) for n > 0;
T(n,1) = n - 2 for n > 1;
T(n,2) = A000124(n-3) for n > 2;
T(n,3) = A003600(n-4) for n > 4;
T(n,n-6) = A001753(n-6) for n > 6;
T(n,n-5) = A001752(n-5) for n > 5;
T(n,n-4) = A002623(n-4) for n > 4;
T(n,n-3) = A002620(n-1) for n > 3;
T(n,n-2) = A008619(n-2) for n > 2;
T(n,n-1) = n mod 2 for n > 0;
T(2*n,n) = A072547(n+1).
Sum_{k=0..n} T(n,k)*x^k = A232015(n), A078008(n), A000012(n), A040000(n), A001045(n+2), A140725(n+1) for x = 2, 1, 0, -1, -2, -3 respectively. - Philippe Deléham, Nov 17 2013, Nov 19 2013
(1,a^n) Pascal triangle with a = -1. - Philippe Deléham, Dec 27 2013
T(n,k) = A112465(n,n-k). - Reinhard Zumkeller, Jan 03 2014

Examples

			From _Philippe Deléham_, Nov 17 2013: (Start)
Triangle begins:
  1;
  1, -1;
  1,  0,  1;
  1,  1,  1, -1;
  1,  2,  2,  0,  1;
  1,  3,  4,  2,  1, -1;
  1,  4,  7,  6,  3,  0,  1; (End)
		

Crossrefs

Cf. A007318 (a=1), A008949(a=2), A164844(a=10).
Similar to the triangles A035317, A059259, A080242, A112555.
Cf. A072547 (central terms).

Programs

  • GAP
    Flat(List([0..13],n->List([0..n],k->Sum([0..k],i->Binomial(n,i)*(-2)^(k-i))))); # Muniru A Asiru, Feb 19 2018
  • Haskell
    a108561 n k = a108561_tabl !! n !! k
    a108561_row n = a108561_tabl !! n
    a108561_tabl = map reverse a112465_tabl
    -- Reinhard Zumkeller, Jan 03 2014
    
  • Maple
    A108561 := (n, k) -> add(binomial(n, i)*(-2)^(k-i), i = 0..k):
    seq(seq(A108561(n,k), k = 0..n), n = 0..12); # Peter Bala, Feb 18 2018
  • Mathematica
    Clear[t]; t[n_, 0] = 1; t[n_, n_] := t[n, n] = (-1)^Mod[n, 2]; t[n_, k_] := t[n, k] = t[n-1, k] + t[n-1, k-1]; Table[t[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 06 2013 *)
  • Sage
    def A108561_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return -prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^k*prec(n, k) for k in (1..n-1)]+[(-1)^(n+1)]
    for n in (1..12): print(A108561_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

G.f.: (1-y*x)/(1-x-(y+y^2)*x). - Philippe Deléham, Nov 17 2013
T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0)=T(1,0)=1, T(1,1)=-1, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Nov 17 2013
From Peter Bala, Feb 18 2018: (Start)
T(n,k) = Sum_{i = 0..k} binomial(n,i)*(-2)^(k-i), 0 <= k <= n.
The n-th row polynomial is the n-th degree Taylor polynomial of the rational function (1 + x)^n/(1 + 2*x) about 0. For example, for n = 4, (1 + x)^4/(1 + 2*x) = 1 + 2*x + 2*x^2 + x^4 + O(x^5). (End)

Extensions

Definition corrected by Philippe Deléham, Dec 26 2013

A279006 Alternating Jacobsthal triangle read by rows (second version).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, -1, 1, 1, 1, -2, 2, 0, 1, 1, -3, 4, -2, 1, 1, 1, -4, 7, -6, 3, 0, 1, 1, -5, 11, -13, 9, -3, 1, 1, 1, -6, 16, -24, 22, -12, 4, 0, 1, 1, -7, 22, -40, 46, -34, 16, -4, 1, 1, 1, -8, 29, -62, 86, -80, 50, -20, 5, 0, 1, 1, -9, 37, -91, 148, -166, 130, -70, 25, -5, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 07 2016

Keywords

Examples

			Triangle begins:
  1,
  1,   1,
  1,   0,   1,
  1,  -1,   1,   1,
  1,  -2,   2,   0,   1,
  1,  -3,   4,  -2,   1,   1,
  1,  -4,   7,  -6,   3,   0,   1,
  1,  -5,  11, -13,   9,  -3,   1,   1,
  1,  -6,  16, -24,  22, -12,   4,   0,   1,
  ...
		

Crossrefs

See A112468, A112555 and A108561 for other versions.

Programs

  • Maple
    T := (n, k) -> local j; add((-1)^j*binomial(n-k-1+j, j), j = 0..k):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..9);  # Peter Luschny, Aug 30 2024
  • Mathematica
    T[i_, i_] = T[, 0] = 1; T[i, j_] := T[i, j] = T[i-1, j] - T[i-1, j-1];
    Table[T[i, j], {i, 0, 11}, {j, 0, i}] // Flatten (* Jean-François Alcover, Sep 06 2018 *)
    T[n_, k_] := 2^k*Hypergeometric2F1[-n, -k, -k, 1/2]; Table[T[n, k], {n, 0, 11}, {k, 0, n}]//Flatten (* Detlef Meya, Aug 30 2024 *)
  • PARI
    \\ using arxiv (3.1) and (3.7) formulas where A is A220074 and B is this sequence
    A(i, j) = if ((i < 0), 0, if (j==0, 1, A(i - 1, j - 1) - A(i - 1, j))); \\ A220074
    B(i, j) = A(i, i-j);
    tabl(nn) = for (i=0, nn, for (j=0, i, print1(B(i,j), ", ")); print()); \\ Michel Marcus, Jun 17 2017

Formula

T(i, j) = A220074(i, i-j). See (3.7) in arxiv link. - Michel Marcus, Jun 17 2017
T(n, k) = 2^k*hypergeom([-n, -k], [-k], 1/2). - Detlef Meya, Aug 30 2024

Extensions

More terms from Michel Marcus, Jun 17 2017

A209756 Triangle of coefficients of polynomials v(n,x) jointly generated with A209755; see the Formula section.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 4, 4, 6, 3, 5, 7, 13, 11, 5, 6, 11, 24, 28, 22, 8, 7, 16, 40, 59, 63, 41, 13, 8, 22, 62, 110, 146, 132, 76, 21, 9, 29, 91, 188, 296, 337, 271, 138, 34, 10, 37, 128, 301, 546, 743, 754, 541, 248, 55, 11, 46, 174, 458, 938, 1477, 1793, 1632
Offset: 1

Views

Author

Clark Kimberling, Mar 14 2012

Keywords

Comments

Column 1: 1,2,3,4,5,6,....... A000027
Column 2: 1,2,4,7,11,........ A000124
Column 3: 2,6,13,24,......... A003600
Last term in row n: 1,1,2,3,. A000045 (Fibonacci numbers)
Row sums: 1,3,7,17,41,...... A001333
Alternating row sums: 1,2,3,3,5,5,7,7,...; A109613
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
2...1
3...2...2
4...4...6....3
5...7...13...11...5
First three polynomials v(n,x): 1, 2 + x , 3 + 2x + 2x^2.
		

Crossrefs

Cf. A208510.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209755 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209756 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]   (* A133654 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]   (* A001333 *)
    Table[u[n, x] /. x -> -1, {n, 1, z}]  (* A033999 *)
    Table[v[n, x] /. x -> -1, {n, 1, z}]  (* A109613 *)

Formula

u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=x*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A220074 Triangle read by rows giving coefficients T(n,k) of [x^(n-k)] in Sum_{i=0..n} (x-1)^i, 0 <= n <= k.

Original entry on oeis.org

1, 1, 0, 1, -1, 1, 1, -2, 2, 0, 1, -3, 4, -2, 1, 1, -4, 7, -6, 3, 0, 1, -5, 11, -13, 9, -3, 1, 1, -6, 16, -24, 22, -12, 4, 0, 1, -7, 22, -40, 46, -34, 16, -4, 1, 1, -8, 29, -62, 86, -80, 50, -20, 5, 0, 1, -9, 37, -91, 148, -166, 130, -70, 25, -5, 1
Offset: 0

Views

Author

Mokhtar Mohamed, Dec 03 2012

Keywords

Comments

If the triangle is viewed as a square array S(m, k) = T(m+k, k), 0 <= m, 0 <= k, its first row is (1,0,1,0,1,...) with e.g.f. cosh(x), g.f. 1/(1-x^2) and subsequent rows have g.f. 1/((1+x)^n*(1-x^2)) (substitute x for -x in g.f. for A059259).
By column, S(m, k) is the coefficient of [x^m] in the generating function Sum_{i=0..k} (-1)^i/(1-x)^(i+1).
This is a rational generating function down column k with a power of (1-x) in the denominator; therefore column k is a polynomial in m respectively n. - Mathew Englander, May 14 2014
Column k multiplied by k! seems to correspond to row k of A054651, considered as a polynomial and then evaluated on the negative integers. For example, row 5 of A054651 represents the polynomial x^5 - 5*x^4 + 25*x^3 + 5*x^2 + 94*x + 120. Evaluating that for x = -1, x = -2, x = -3, ... gives (0, -360, -1440, -4080, -9600, -19920, -37680, ...) which is 5! times column 5 of this triangle. - Mathew Englander, May 23 2014
This triangle provides a solution to a question in the mathematics of gambling. For 0 < p < 1 and positive integers N and G with N < G, suppose you begin with N dollars and make repeated wagers, each time winning 1 dollar with probability p and losing 1 dollar with probability 1-p. You continue betting 1 dollar at a time until you have either G dollars (your Goal) or 0 (bankrupt). What is the probability of reaching your Goal before going bankrupt, as a function of p, N, and G? (This is a type of one-dimensional random walk.) Answer: Let Q_m_(x) be the polynomial whose coefficients are given by row m-1 of the triangle (e.g., Q_6_(x) = 1 - 4x + 7x^2 - 6x^3 + 3x^4). Then, the probability of reaching G dollars before going bankrupt is p^(G-N)*Q_N_(p)/Q_G_(p). - Mathew Englander, May 23 2014
From Paul Curtz, Mar 17 2017: (Start)
Consider the triangle Ja(n+1,k) (here, but generally Ja(n,k)) composed of the triangle a(n) prepended with a column of 0's, i.e.,
0;
0, 1;
0, 1, 0;
0, 1, -1, 1;
0, 1, -2, 2, 0;
0, 1, -3, 4, -2, 1;
0, 1, -4, 7, -6, 3, 0;
0, 1, -5, 11, -13, 9, -3, 1;
... .
The row sums are 0, 1, 1, ... = A057427(n), the most elementary autosequence of the first kind (a sequence of the first kind has 0's as main diagonal of its array of successive differences).
The row sums of the absolute values are A001045(n).
Ja applied to a sequence written in its reluctant form yields an autosequence of the first kind. Example: the reluctant form of A001045(n) is 0, 0, 1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 1, 3, 5, ... = Jl.
Jl multiplied by Ja gives the triangle Jal:
0;
0, 1;
0, 1, 0;
0, 1, -1, 3;
0, 1, -2, 6, 0;
0, 1, -3, 12, -10, 11;
0, 1, -4, 21, -30, 33, 0;
0, 1, -5, 33, -65, 99, -63, 43;
... .
The row sums are A001045(n). (End)

Examples

			Triangle begins:
  1;
  1,   0;
  1,  -1,   1;
  1,  -2,   2,    0;
  1,  -3,   4,   -2,    1;
  1,  -4,   7,   -6,    3,    0;
  1,  -5,  11,  -13,    9,   -3,    1;
  1,  -6,  16,  -24,   22,  -12,    4,    0;
  1,  -7,  22,  -40,   46,  -34,   16,   -4,   1;
  1,  -8,  29,  -62,   86,  -80,   50,  -20,   5,   0;
  1,  -9,  37,  -91,  148, -166,  130,  -70,  25,  -5, 1;
  1, -10,  46, -128,  239, -314,  296, -200,  95, -30, 6, 0;
  ...
		

Crossrefs

Similar to the triangles A080242, A108561, A112555, A071920.
Cf. A000124 (column 2), A003600 (column 3), A223718 (column 4, conjectured), A257890 (column 5).

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Sum([0..k], j-> (-1)^j*Binomial(n-k+j, j))))); # G. C. Greubel, Feb 18 2019
  • Magma
    [[(&+[(-1)^j*Binomial(n-k+j, j): j in [0..k]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 18 2019
    
  • Maple
    A059259A := proc(n,k)
        1/(1+y)/(1-x-y) ;
        coeftayl(%,x=0,n) ;
        coeftayl(%,y=0,k) ;
    end proc:
    A059259 := proc(n,k)
        A059259A(n-k,k) ;
    end proc:
    A220074 := proc(i,j)
        (-1)^j*A059259(i,j) ;
    end proc: # R. J. Mathar, May 14 2014
  • Mathematica
    Table[Sum[(-1)^i*Binomial[n-k+i,i], {i, 0, k}], {n, 0, 12}, {k, 0, n} ]//Flatten (* Michael De Vlieger, Jan 27 2016 *)
  • PARI
    {T(n,k) = sum(j=0,k, (-1)^j*binomial(n-k+j,j))};
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 18 2019
    
  • Sage
    [[sum((-1)^j*binomial(n-k+j,j) for j in (0..k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 18 2019
    

Formula

Sum_{k=0..n} T(n,k) = 1.
T(n,k) = Sum_{i=0..k} (-1)^i*binomial(n-k+i, i).
T(2*n,n) = (-1)^n*A026641(n).
T(n,k) = (-1)^k*A059259(n,k).
T(n,0) = 1, T(n,n) = (1+(-1)^n)/2, and T(n,k) = T(n-1,k) - T(n-1,k-1) for 0 < k < n. - Mathew Englander, May 24 2014

Extensions

Definition and comments clarified by Li-yao Xia, May 15 2014

A253190 Triangle T(n, m)=Sum_{k=1..(n-m)/2} C(m+k-1, k)*T((n-m)/2, k), T(n,n)=1.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 3, 0, 1, 0, 3, 0, 4, 0, 1, 2, 0, 6, 0, 5, 0, 1, 0, 6, 0, 10, 0, 6, 0, 1, 3, 0, 13, 0, 15, 0, 7, 0, 1, 0, 11, 0, 24, 0, 21, 0, 8, 0, 1, 5, 0, 27, 0, 40, 0, 28, 0, 9, 0, 1, 0, 20, 0, 55, 0, 62, 0, 36, 0, 10, 0, 1
Offset: 1

Views

Author

Vladimir Kruchinin, Mar 24 2015

Keywords

Examples

			1;
0, 1;
1, 0, 1;
0, 2, 0, 1;
1, 0, 3, 0, 1;
0, 3, 0, 4, 0, 1;
2, 0, 6, 0, 5, 0, 1;
		

Crossrefs

Cf. A000621 (row sums), A003600, A253184, A253189.

Programs

  • Maple
    A253190 := proc(n,m)
        option remember;
        if n = m then
            1;
        elif type(n-m,'odd') then
            0 ;
        else
            add(binomial(m+k-1,k)*procname((n-m)/2,k),k=1..(n-m)/2) ;
        end if;
    end proc: # R. J. Mathar, Dec 16 2015
  • Maxima
    T(n, m):=if n=m then 1 else sum(binomial(m+k-1, k)*T((n-m)/2, k), k, 1, (n-m)/2);

Formula

G.f.: A(x)^m=Sum_{n>=m} T(n,m)x^n, A(x)=Sum_{n>0} a(n)*x^(2*n-1), a(n) - is A000621.

A283551 a(n) = -1 + 5*n/6 + n^3/6.

Original entry on oeis.org

-1, 0, 2, 6, 13, 24, 40, 62, 91, 128, 174, 230, 297, 376, 468, 574, 695, 832, 986, 1158, 1349, 1560, 1792, 2046, 2323, 2624, 2950, 3302, 3681, 4088, 4524, 4990, 5487, 6016, 6578, 7174, 7805, 8472, 9176, 9918, 10699, 11520, 12382, 13286, 14233, 15224, 16260
Offset: 0

Views

Author

Paul Curtz, Mar 10 2017

Keywords

Comments

Essentially a duplicate of A003600.

Examples

			G.f. = -1 + 2*x^2 + 6*x^3 + 13*x^4 + 24*x^5 + 40*x^6 + 62*x^7 + ... - _Michael Somos_, Jul 07 2022
		

Crossrefs

Essentially a duplicate of A003600.

Programs

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3.
a(n) = a(n-1) + A000124(n).
G.f.: -(1 - 4*x + 4*x^2 - 2*x^3)/(1-x)^4. - Robert G. Wilson v, Mar 15 2017
E.g.f.: (1/6)*(-6 + 6*x + 3*x^2 + x^3)*exp(x). - G. C. Greubel, Apr 18 2025

Extensions

Corrected by Jeremy Gardiner, Jan 29 2019

A291652 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of k-th power of continued fraction 1/(1 - x/(1 - x^2/(1 - x^3/(1 - x^4/(1 - x^5/(1 - ...)))))).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 2, 0, 1, 4, 6, 6, 3, 0, 1, 5, 10, 13, 11, 5, 0, 1, 6, 15, 24, 27, 20, 9, 0, 1, 7, 21, 40, 55, 54, 38, 15, 0, 1, 8, 28, 62, 100, 120, 109, 70, 26, 0, 1, 9, 36, 91, 168, 236, 258, 216, 129, 45, 0, 1, 10, 45, 128, 266, 426, 540, 544, 423, 238, 78, 0, 1, 11, 55, 174, 402, 721, 1035, 1205, 1127, 824, 437, 135, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 28 2017

Keywords

Examples

			G.f. of column k: A_k(x) = 1 + k*x + k*(k + 1)*x^2/2 +  k*(k^2 + 3*k + 8)*x^3/6 + k*(k^3 + 6*k^2 + 35*k + 30)*x^4/24 + ...
Square array begins:
1,  1,   1,   1,    1,    1,  ...
0,  1,   2,   3,    4,    5,  ...
0,  1,   3,   6,   10,   15,  ...
0,  2,   6,  13,   24,   40,  ...
0,  3,  11,  27,   55,  100,  ...
0,  5,  20,  54,  120,  236,  ...
		

Crossrefs

Columns k=0..1 give A000007, A005169.
Rows n=0..3 give A000012, A001477, A000217, A003600 (with a(0)=0).
Main diagonal gives A291653.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-x^i, 1, {i, 1, n}])^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[((Sum[(-1)^i x^(i (i + 1))/Product[(1 - x^m), {m, 1, i}], {i, 0, n}])/(Sum[(-1)^i x^(i^2)/Product[(1 - x^m), {m, 1, i}], {i, 0, n}]))^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: (1/(1 - x/(1 - x^2/(1 - x^3/(1 - x^4/(1 - x^5/(1 - ...)))))))^k, a continued fraction.

A201635 Triangle formed by T(n,n) = (-1)^n*Sum_{j=0..n} C(-n,j), T(n,k) = Sum_{j=0..k} T(n-1,j) for k=0..n-1, and n>=0, read by rows.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 1, 2, 4, 6, 1, 3, 7, 13, 22, 1, 4, 11, 24, 46, 80, 1, 5, 16, 40, 86, 166, 296, 1, 6, 22, 62, 148, 314, 610, 1106, 1, 7, 29, 91, 239, 553, 1163, 2269, 4166, 1, 8, 37, 128, 367, 920, 2083, 4352, 8518, 15792, 1, 9, 46, 174, 541, 1461, 3544, 7896
Offset: 0

Views

Author

Peter Luschny, Nov 14 2012

Keywords

Comments

Notation: If a sequence id is starred then the offset and/or some terms are different. Starred terms indicate the variance.
Row sums: [A026641 ] [1, 1, 4, 13, 46, 166, 610]
--
T(j+2, 2) [A000124*] [1*, 2 , 4, 7, 11, 16, 22]
T(j+3, 3) [A003600*] [1*, 2*, 6, 13, 24, 40, 62]
--
T(j , j) [A072547 ] [1, 0, 2, 6, 22, 80, 296]
T(j+1, j) [A026641 ] [1, 1, 4, 13, 46, 166, 610]
T(j+2, j) [A014300 ] [1, 2, 7, 24, 86, 314, 1163]
T(j+3, j) [A014301*] [1, 3, 11, 40, 148, 553, 2083]
T(j+4, j) [A172025 ] [1, 4, 16, 62, 239, 920, 3544]
T(j+5, j) [A172061 ] [1, 5, 22, 91, 367, 1461, 5776]
T(j+6, j) [A172062 ] [1, 6, 29, 128, 541, 2232, 9076]
T(j+7, j) [A172063 ] [1, 7, 37, 174, 771, 3300, 13820]
--
T(2j ,j) [Central ] [1, 1, 7, 40, 239, 1461, 9076]
T(2j+1,j) [A183160 ] [1, 2, 11, 62, 367, 2232, 13820]
T(2j+2,j) [ ] [1, 3, 16, 91, 541, 3300, 20476]
T(2j+3,j) [A199033*] [1, 4, 22, 128, 771, 4744, 29618]

Examples

			Triangle begins as:
[n]|k->
[0] 1
[1] 1, 0
[2] 1, 1,  2
[3] 1, 2,  4,  6
[4] 1, 3,  7, 13,  22
[5] 1, 4, 11, 24,  46,  80
[6] 1, 5, 16, 40,  86, 166, 296
[7] 1, 6, 22, 62, 148, 314, 610, 1106.
		

Programs

  • Maple
    A201635 := proc(n,k) option remember; local j;
    if n=k then (-1)^n*add(binomial(-n,j), j=0..n)
    else add(A201635(n-1,j), j=0..k) fi end:
    for n from 0 to 7 do seq(A(n,k), k=0..n) od;
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==n, (-1)^n*Sum[Binomial[-n, j], {j, 0, n}], Sum[T[n-1, j], {j, 0, k}]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 27 2019 *)
  • PARI
    {T(n,k) = if(k==n, (-1)^n*sum(j=0,n, binomial(-n,j)), sum(j=0,k, T(n-1,j)))};
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 27 2019
  • Sage
    @CachedFunction
    def A201635(n, k):
        if n==k: return (-1)^n*add(binomial(-n, j) for j in (0..n))
        return add(A201635(n-1, j) for j in (0..k))
    for n in (0..7) : [A201635(n, k) for k in (0..n)]
    
Showing 1-10 of 11 results. Next