A003601 Numbers j such that the average of the divisors of j is an integer: sigma_0(j) divides sigma_1(j). Alternatively, numbers j such that tau(j) (A000005(j)) divides sigma(j) (A000203(j)).
1, 3, 5, 6, 7, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 27, 29, 30, 31, 33, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 77, 78, 79, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 105
Offset: 1
Examples
Sigma(6) = 12, tau(6) = 4, sigma(6)/tau(6) = 3 so 6 belongs to this sequence. - _Bernard Schott_, Jun 07 2017
References
- R. K. Guy, Unsolved Problems in Number Theory, B2.
- D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.51.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, The Biharmonic mean, arXiv:1601.03081 [math.NT], 2016.
- Paul T. Bateman, Paul Erdős, Carl Pomerance, and E. G. Straus, The arithmetic mean of the divisors of an integer (1981). In Knopp, M.I. ed., Analytic number theory, Proc. Conf., Temple Univ., 1980. Lecture Notes in Mathematics. 899. Springer-Verlag., pp. 197-220.
- Antonio M. Oller-Marcén, On arithmetic numbers, arXiv:1206.1823 [math.NT], 2012.
- O. Ore, On the averages of the divisors of a number, Amer. Math. Monthly, 55 (1948), 615-619.
- Wikipedia, Arithmetic number.
Crossrefs
Programs
-
GAP
a:=Filtered([1..110],n->Sigma(n) mod Tau(n)=0);; Print(a); # Muniru A Asiru, Jan 25 2019
-
Haskell
a003601 n = a003601_list !! (n-1) a003601_list = filter ((== 1) . a245656) [1..] -- Reinhard Zumkeller, Jul 28 2014, Dec 31 2013, Jan 06 2012
-
Maple
with(numtheory); t := [ ]: f := [ ]: for n from 1 to 500 do if sigma(n) mod tau(n) = 0 then t := [ op(t), n ] else f := [ op(f), n ]; fi; od: t; # corrected by Wesley Ivan Hurt, Oct 03 2013
-
Mathematica
Select[Range[120], IntegerQ[DivisorSigma[1, # ]/DivisorSigma[0, # ]] &] (* Stefan Steinerberger, Apr 03 2006 *)
-
PARI
is(n)=sigma(n)%numdiv(n)==0 \\ Charles R Greathouse IV, Jul 10 2012
-
Python
from sympy import divisors, divisor_count [n for n in range(1,10**5) if not sum(divisors(n)) % divisor_count(n)] # Chai Wah Wu, Aug 05 2014
Formula
a(n) ~ n. - Charles R Greathouse IV, Jul 10 2012
A245656(a(n)) = 1. - Reinhard Zumkeller, Jul 28 2014
Extensions
David W. Wilson, Oct 15 1996, points out that 30 was missing.
More terms from Stefan Steinerberger, Apr 03 2006
Comments