A003777 a(n) = n^3 + n^2 - 1.
1, 11, 35, 79, 149, 251, 391, 575, 809, 1099, 1451, 1871, 2365, 2939, 3599, 4351, 5201, 6155, 7219, 8399, 9701, 11131, 12695, 14399, 16249, 18251, 20411, 22735, 25229, 27899, 30751, 33791, 37025, 40459, 44099, 47951, 52021, 56315, 60839, 65599, 70601, 75851
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[(n^3+n^2-1): n in [1..50]]; // Vincenzo Librandi, Apr 06 2011
-
Maple
A003777:=n->n^3+n^2-1; seq(A003777(n), n=1..50); # Wesley Ivan Hurt, Jun 04 2014
-
Mathematica
Table[n^3+n^2-1,{n,100}] (* Vladimir Joseph Stephan Orlovsky, Mar 09 2011 *) CoefficientList[Series[(1 + 7 x - 3 x^2 + x^3)/(1-x)^4, {x,0,50}], x] (* Vincenzo Librandi, Jun 20 2013 *) LinearRecurrence[{4,-6,4,-1},{1,11,35,79},50] (* Harvey P. Dale, Jul 20 2024 *)
-
PARI
a(n)=n^3+n^2-1 \\ Charles R Greathouse IV, Oct 07 2015
-
SageMath
[n^3+n^2-1 for n in range(1,51)] # G. C. Greubel, Jan 03 2024
Formula
G.f.: x*(1+7*x-3*x^2+x^3)/(1-x)^4. Also, a(n) = 2*A002411(n) - 1 = A000578(n-1) + A001107(n). - Bruno Berselli, Dec 28 2010
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4. - Wesley Ivan Hurt, Oct 08 2017
E.g.f.: 1 + (-1 + 2*x + 4*x^2 + x^3)*exp(x). - G. C. Greubel, Jan 03 2024
Extensions
More terms from Wesley Ivan Hurt, Jun 04 2014
Entry revised by N. J. A. Sloane, Jun 15 2014
Comments