cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A063923 Numbers k such that k^5 = a^5 + b^5 + c^5 + d^5 + e^5 has a nontrivial primitive solution in nonnegative integers.

Original entry on oeis.org

72, 94, 107, 144, 365, 415, 427, 435, 480, 503, 530, 553, 575, 650, 700, 703, 716, 729, 744, 764, 804, 848, 851, 875, 923, 941, 975, 1004, 1006, 1040, 1044, 1235, 1257, 1313, 1327, 1329, 1369, 1392, 1457, 1469, 1504, 1528, 1537, 1575, 1583, 1588, 1596, 1623, 1653, 1685, 1686
Offset: 1

Views

Author

David W. Wilson, Aug 31 2001

Keywords

Comments

Primitive means a solution for k has gcd(a,b,c,d,e) = 1. [Corrected by Jianing Song, Jan 24 2020]
Nontrivial means at least two of a,b,c,d,e are nonzero. - Jianing Song, Jan 24 2020

Examples

			   72^5 = 19^5 + 43^5 + 46^5 + 47^5 +  67^5;
   94^5 = 21^5 + 23^5 + 37^5 + 79^5 +  84^5;
  107^5 =  7^5 + 43^5 + 57^5 + 80^5 + 100^5.
		

Crossrefs

Cf. A063922.
For cubes: A003072, A023041, A261029.
For fourth powers: A003828, A175610, A039664, A003294.

Extensions

144 and 1006 inserted and name simplified by Jianing Song, Jan 24 2020
More terms from Jinyuan Wang, Jan 24 2020

A175610 Numbers k such that k^4 = x^4 + y^4 + z^4, where x,y,z are positive integers.

Original entry on oeis.org

422481, 844962, 1267443, 1689924, 2112405, 2534886, 2813001, 2957367, 3379848, 3802329, 4224810, 4647291, 5069772, 5492253, 5626002, 5914734, 6337215, 6759696, 7182177, 7604658, 8027139, 8439003, 8449620, 8707481, 8872101, 9294582, 9717063, 10139544, 10562025, 10984506
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 24 2010

Keywords

Comments

Main sequence is A003828.

Examples

			a(1) = 422481 because 422481^4 = 95800^4 + 217519^4 + 414560^4.
a(61) = 20615673 because 20615673^4 = 2682440^4 + 15365639^4 + 18796760^4.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100], (p = PowersRepresentations[#^4, 3, 4]; (Select[p, #[[1]] > 0 && #[[2]] > 0 && #[[3]] > 0 &] != {})) &] (* Jinyuan Wang, Feb 20 2020 *)
  • PARI
    is(n) = for(a=sqrtnint(n^4\3,4), n-1, for(b=1, a, for(c=1, b, if(n^4==a^4+b^4+c^4, return(1))))); 0; \\ Charles R Greathouse IV, Aug 29 2013 and slightly modified by Jinyuan Wang, Feb 20 2020

Extensions

Terms and example corrected by Charles R Greathouse IV, Aug 29 2013
First 0 removed by Jinyuan Wang, Feb 20 2020

A063922 Numbers k such that k^5 = a^5 + b^5 + c^5 + d^5 + e^5 has a nontrivial solution in nonnegative integers.

Original entry on oeis.org

72, 94, 107, 144, 188, 214, 216, 282, 288, 321, 360, 365, 376, 415, 427, 428, 432, 435, 470, 480, 503, 504, 530, 535, 553, 564, 575, 576, 642, 648, 650, 658, 700, 703, 716, 720, 729, 730, 744, 749, 752, 764, 792, 804, 830, 846, 848, 851, 854, 856, 864, 870
Offset: 1

Views

Author

David W. Wilson, Aug 31 2001

Keywords

Comments

Any multiple of a term is again a term of this sequence. See A063923 for the primitive solutions. See A007666 for similar solutions for other powers. - M. F. Hasler, Nov 17 2015
Nontrivial means at least two of a,b,c,d,e are nonzero. - Jianing Song, Jan 24 2020

Examples

			   72^5 = 19^5 + 43^5 + 46^5 + 47^5 +  67^5;
   94^5 = 21^5 + 23^5 + 37^5 + 79^5 +  84^5;
  107^5 =  7^5 + 43^5 + 57^5 + 80^5 + 100^5.
		

Crossrefs

Cf. A063923.
For fourth powers: A003828, A175610, A039664, A003294.

A134341 Numbers whose fifth powers have a partition as a sum of fifth powers of four positive integers.

Original entry on oeis.org

144, 288, 432, 576, 720, 864, 1008, 1152, 1296, 1440, 1584, 1728, 1872, 2016, 2160, 2304, 2448, 2592, 2736, 2880, 3024, 3168, 3312, 3456, 3600, 3744, 3888, 4032, 4176, 4320, 4464, 4608, 4752, 4896, 5040, 5184, 5328, 5472, 5616, 5760, 5904, 6048, 6192
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2007

Keywords

Comments

The only primitive terms (that is, in which the summands do not all have a common factor) known are 144 and 85359. - Jianing Song, Jan 24 2020
The paper by Lander and Parkin where they just give the first known counterexample to Euler's conjecture, 27^5 + 84^5 + 110^5 + 133^5 = 144^5, found using a CDC6600, is known as one of the shortest published proofs. - M. F. Hasler, Mar 11 2020

Examples

			a(1) = 144 because 144^5 = 27^5 + 84^5 + 110^5 + 133^5;
a(593) = 85359 because 85359^5 = 55^5 + 3183^5 + 28969^5 + 85282^5 = 4531548087264753520490799 (Jim Frye 2005). [Typo corrected by _Sébastien Palcoux_, Jul 05 2017]
		

References

  • L. E. Dickson, History of the theory of numbers, Vol. 2, Chelsea, New York, 1952, p. 648.

Crossrefs

Extensions

Incorrect formula removed by Jianing Song, Jan 24 2020

A078518 Consider primitive solutions (x,y,z) to x^4+y^4+z^4=w^4 with 0

Original entry on oeis.org

95800, 2767624, 8332208, 11289040, 12552200, 3642840, 2682440, 2164632, 10409096, 34918520, 1841160, 27450160, 186668000, 219076465, 558424440, 588903336, 50237800, 686398000, 92622401
Offset: 1

Views

Author

N. J. A. Sloane, Jan 07 2003

Keywords

References

  • See A003828 for references and links.

Crossrefs

Extensions

a(8)-a(19) from A003828 added by Sean A. Irvine, Jul 03 2025

A078519 Consider primitive solutions (x,y,z) to x^4+y^4+z^4=w^4 with 0

Original entry on oeis.org

217519, 1390400, 5507880, 8282543, 12552200, 7028600, 15365639, 31669120, 42878560, 87865617, 121952168, 108644015, 260052385, 275156240, 606710871, 859396455, 632671960, 1237796960, 1553556440
Offset: 1

Views

Author

N. J. A. Sloane, Jan 07 2003

Keywords

References

  • See A003828 for references and links.

Crossrefs

Extensions

Data corrected and extended using A003828 by Sean A. Irvine, Jul 03 2025

A078520 Consider primitive solutions (x,y,z) to x^4+y^4+z^4=w^4 with 0

Original entry on oeis.org

414560, 2767624, 8332208, 11289040, 14173720, 16281009, 18796760, 41084175, 65932985, 106161120, 122055375, 146627384, 582665296, 630662624, 769321280, 1166705840, 1670617271, 1662997663, 1593513080
Offset: 1

Views

Author

N. J. A. Sloane, Jan 07 2003

Keywords

References

  • See A003828 for references and links.

Crossrefs

Extensions

Data corrected and extended using A003828 by Sean A. Irvine, Jul 03 2025

A130022 Smallest natural number whose 4th power is the sum of n 4th powers of distinct natural numbers, or 0 if no such number exists.

Original entry on oeis.org

1, 0, 422481, 353, 15, 35, 25, 31, 37, 41, 35, 43, 39, 43, 47, 53, 55, 50, 50, 46, 48, 48, 50, 48, 50, 48, 52, 53, 55, 56, 54, 58, 58, 63, 65, 67, 70, 71, 73, 77, 81, 85, 87, 91, 93, 97, 101
Offset: 1

Views

Author

J. Lowell, Jun 15 2007

Keywords

Crossrefs

Cf. a(3) A003828, a(4) A096739, 3rd powers A130012, n-th powers A007666.

Extensions

More terms from Martin Fuller, Jul 06 2007

A331675 Numbers k such that k^4 = a^4 + b^4 + c^4 + d^4 has at least two positive primitive solutions.

Original entry on oeis.org

31127, 41963, 72899, 154789, 195479, 208471
Offset: 1

Views

Author

Jianing Song, Jan 24 2020

Keywords

Comments

Primitive solutions means gcd(a,b,c,d) = 1.
These are all terms from Jaroslaw Wroblewski link, which gives all positive solutions to k^4 = a^4 + b^4 + c^4 + d^4 where k < 222000, gcd(a,b,c,d) = 1.

Examples

			Solutions to k^4 = a^4 + b^4 + c^4 + d^4 = a'^4 + b'^4 + c'^4 + d'^4:
31127: (2260, 4870, 17386, 30335), (2495, 11998, 16430, 30320);
41963: (1100, 17260, 25015, 40234), (8750, 12109, 14470, 41720);
72899: (4555, 44270, 58868, 59330), (9700, 16480, 47618, 69265);
154789: (49586, 55450, 102170, 145615), (66405, 106740, 119760, 121664);
195479: (12970, 43340, 140947, 180520), (25570, 41080, 112822, 189695);
208471: (3903, 46560, 61290, 207950), (91045, 149222, 150550, 168730).
		

Crossrefs

Subsequence of A039664 (and thus of A003294).
Other similar sequences:
A023041 (k^3=a^3+b^3+c^3, gcd(a,b,c)=1);
A003828 (k^4=a^4+b^4+c^4, gcd(a,b,c)=1);
A175610 (k^4=a^4+b^4+c^4);
A134341 (k^5=a^5+b^5+c^5+d^5);
A063923 (k^5=a^5+b^5+c^5+d^5+e^5, gcd(a,b,c,d,e)=1);
A063922 (k^5=a^5+b^5+c^5+d^5+e^5);
A331674 (k^5=a^5+b^5+c^5+d^5+e^5, gcd(a,b,c,d,e)=1, at least two solutions).

A347773 Square array read by antidiagonals downwards: T(n,k) is the smallest positive integer whose n-th power is the sum of k n-th powers of positive integers, or 0 if no such number exists.

Original entry on oeis.org

1, 2, 1, 3, 5, 1, 4, 3, 0, 1, 5, 2, 6, 0, 1, 6, 4, 7, 422481, 0, 1, 7, 3, 4, 353
Offset: 1

Views

Author

Eric Chen, Sep 15 2021

Keywords

Comments

a(26) = T(5,3) is conjectured to be 0, but this has not been proved.
By Fermat's last theorem, T(n,2) = 0 for n > 2.
Euler's sum of powers conjecture is that T(n,k) = 0 for n > k > 1, but this conjecture is not true: T(4,3) = 422481, T(5,4) = 144, there are no known counterexamples for n >= 6.
There are no known 0s for k > 2.
Conjecture: If T(n,k) = 0, then T(r,k) = T(n,s) = T(r,s) = 0 for all r >= n, 2 <= s <= k.

Examples

			Table begins:
  n\k |  1   2       3    4   5   6     7     8
  ----+----------------------------------------
   1  |  1   2       3    4   5   6     7     8
   2  |  1   5       3    2   4   3     4     4
   3  |  1   0       6    7   4   3     5     2
   4  |  1   0  422481  353   5   3     9    13
   5  |  1   0       ?  144  72  12    23    14
   6  |  1   0       ?    ?   ?   ?  1141   251
   7  |  1   0       ?    ?   ?   ?   568   102
   8  |  1   0       ?    ?   ?   ?     ?  1409
T(2,5) = 4 because 4^2 = 1^2 + 1^2 + 1^2 + 2^2 + 3^2 and there is no smaller square that is the sum of 5 positive squares.
T(4,3) = 422481 because 422481^4 = 95800^4 + 217519^4 + 414560^4 and there is no smaller 4th power that is the sum of 3 positive 4th powers.
T(7,7) = 568 because 568^7 = 127^7 + 258^7 + 266^7 + 413^7 + 430^7 + 439^7 + 525^7 and there is no smaller 7th power that is the sum of 7 positive 7th powers.
		

Crossrefs

Cf. A007666 (main diagonal), A264764 (subdiagonal for k = n-1).
Cf. A175610 and A003828 (both for a(19) = T(4,3) = 422481).
Cf. A003294 and A039664 (both for a(25) = T(4,4) = 353).
Cf. A134341 (for a(33) = T(5,4) = 144).
Cf. A063922 and A063923 (both for a(41) = T(5,5) = 72).
Cf. A130012, A130022 (these two sequences are not rows of this table, since they require DISTINCT n-th powers, but this table does not have that requirement).

Programs

  • PARI
    /* return 0 instead of 1 for n=1, and oo loop when T(n, k)=0 */ A347773(p, n, s, m)={ /* Check whether s can be written as sum of n positive p-th powers not larger than m^p. If so, return the base a of the largest term a^p. */ s>n*m^p && return; n==1&&return(ispower(s, p, &n)*n); /* if s and m are not given, s>=n and m are arbitrary. */ !s&&for(m=round(sqrtn(n, p)), 9e9, A347773(p, n, m^p, m-1)&&return(m)); for(a=ceil(sqrtn(s\n, p)), min(sqrtn(max(0, s-n+1), p), m), A347773(p, n-1, s-a^p, a)&&return(a)); } /* after M. F. Hasler in A007666 */ /* Just enter "A347773(n, k)" to get T(n, k) */

Formula

T(n,1) = 1.
T(1,k) = k.
T(n,2) = 0 for n > 2.
T(n,n) = A007666(n).
T(n,n-1) = A264764(n).
T(3,k) <= A130012(k).
T(4,k) <= A130022(k).
Showing 1-10 of 18 results. Next