cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004123 Number of generalized weak orders on n points.

Original entry on oeis.org

1, 2, 10, 74, 730, 9002, 133210, 2299754, 45375130, 1007179562, 24840104410, 673895590634, 19944372341530, 639455369290922, 22079273878443610, 816812844197444714, 32232133532123179930, 1351401783010933015082
Offset: 1

Views

Author

Keywords

Comments

Number of bipartitional relations on a set of cardinality n. - Ralf Stephan, Apr 27 2003
From Peter Bala, Jul 08 2022: (Start)
Conjecture: Let k be a positive integer. The sequence obtained by reducing a(n) modulo k is eventually periodic with the period dividing phi(k) = A000010(k). For example, modulo 7 we obtain the sequence [1, 2, 3, 4, 2, 0, 0, 2, 3, 4, 2, 0, 0, 2, 3, 4, 2, 0, 0, ...] with an apparent period of 6 = phi(7) starting at a(2). Cf. A000670.
More generally, we conjecture that the same property holds for integer sequences having an e.g.f. of the form G(exp(x) - 1), where G(x) is an integral power series. (End)

References

  • L Santocanale, F Wehrung, G Grätzer, F Wehrung, Generalizations of the Permutohedron, in Grätzer G., Wehrung F. (eds) Lattice Theory: Special Topics and Applications. Birkhäuser, Cham, pp. 287-397; DOI https://doi.org/10.1007/978-3-319-44236-5_8
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Second row of array A094416 (generalized ordered Bell numbers).
Equals 2 * A050351(n) for n>0.

Programs

  • Mathematica
    a[n_] := (1/3)*PolyLog[-n + 1, 2/3]; a[1]=1; Table[a[n], {n, 1, 18}] (* Jean-François Alcover, Jun 11 2012 *)
    CoefficientList[Series[1/(3-2*Exp[x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Aug 07 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, 2^m*m!*x^(m+1)/prod(k=1, m, 1-k*x+x*O(x^n))), n)} /* Paul D. Hanna, Jul 20 2011 */
    
  • PARI
    my(N=25,x='x+O('x^N)); Vec(serlaplace(1/(3 - 2*exp(x)))) \\ Joerg Arndt, Jan 15 2024
    
  • Sage
    A004123 = lambda n: sum(stirling_number2(n-1,k)*(2^k)*factorial(k) for k in (0..n-1))
    [A004123(n) for n in (1..18)] # Peter Luschny, Jan 18 2016

Formula

E.g.f. for sequence with offset 0: 1/(3-2*exp(x)).
a(n) = 2^n*A(n,3/2); A(n,x) the Eulerian polynomials. - Peter Luschny, Aug 03 2010
O.g.f.: Sum_{n>=0} 2^n*n!*x^(n+1)/Product_{k=0..n} (1-k*x). - Paul D. Hanna, Jul 20 2011
a(n) = Sum_{k>=0} k^n*(2/3)^k/3.
a(n) = Sum_{k=0..n} Stirling2(n, k)*(2^k)*k!.
Stirling transform of A000165. - Karol A. Penson, Jan 25 2002
"AIJ" (ordered, indistinct, labeled) transform of 2, 2, 2, 2, ...
Recurrence: a(n) = 2*Sum_{k=1..n} binomial(n, k)*a(n-k), a(0)=1. - Vladeta Jovovic, Mar 27 2003
a(n) ~ (n-1)!/(3*(log(3/2))^n). - Vaclav Kotesovec, Aug 07 2013
a(n) = log(3/2)*Integral_{x>=0} floor(x)^n * (3/2)^(-x) dx. - Peter Bala, Feb 14 2015
E.g.f.: (x - log(3 - 2*exp(x)))/3. - Ilya Gutkovskiy, May 31 2018
Conjectural o.g.f. as a continued fraction of Stieltjes type: 1/(1 - 2*x/(1 - 3*x/(1 - 4*x/(1 - 6*x/(1 - ... - 2*n*x/(1 - 3*n*x/(1 - ...))))))). - Peter Bala, Jul 08 2022

Extensions

More terms from Christian G. Bower