A088222
Coefficient of x^n in g.f.^n is A004123(n).
Original entry on oeis.org
1, 2, 3, 10, 69, 678, 8496, 128316, 2258262, 45292494, 1018882779, 25399668480, 694999352141, 20710476430548, 667708554093132, 23159551588872624, 860001996926543616, 34043670528120810846, 1431191816223150995395
Offset: 0
-
{a(n)=polcoeff(x/serreverse(x*exp(sum(m=1, n+1, sum(k=0, m, stirling(m, k, 2)*(2^k)*k!)*x^m/m +x^2*O(x^n)))), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Feb 11 2015
A167141
G.f.: Sum_{n>=0} A004123(n)^2*log(1+x)^n/n! where 1/(1-2x) = Sum_{n>=0} A004123(n)*log(1+x)^n/n!.
Original entry on oeis.org
1, 4, 48, 864, 20880, 632448, 23018688, 978179328, 47529084096, 2598928566336, 157937795847936, 10559489876375040, 770269715428025088, 60876094422772800000, 5181654464327251948032, 472584847824904789910016
Offset: 0
G.f.: A(x) = 1 + 4*x + 48*x^2 + 864*x^3 + 20880*x^4 + 632448*x^5 +...
Illustrate A(x) = Sum_{n>=0} A004123(n)^2 * log(1+x)^n/n!:
A(x) = 1 + 2^2*log(1+x) + 10^2*log(1+x)^2/2! + 74^2*log(1+x)^3/3! + 730^2*log(1+x)^4/4! + 9002^2*log(1+x)^5/5! +...+ A004123(n)^2*log(1+x)^n/n! +...
where the e.g.f. of A004123 is 1/(3 - 2*exp(x)) and thus:
1/(1-2x) = 1 + 2*log(1+x) + 10*log(1+x)^2/2! + 74*log(1+x)^3/3! + 730*log(1+x)^4/4! + 9002*log(1+x)^5/5! +...+ A004123(n)*log(1+x)^n/n! +...
-
{A004123(n)=sum(k=0,n,2^k*stirling(n, k, 2)*k!)}
{a(n)=polcoeff(sum(m=0,n,A004123(m)^2*log(1+x+x*O(x^n))^m/m!),n)}
Original entry on oeis.org
1, 3, 13, 87, 817, 9819, 143029, 2442783, 47817913, 1054997475, 25895101885, 699790692519, 20644163034049, 660099532324971, 22739373410768581, 839552217608213295, 33071685749731393225, 1384473468760664408307
Offset: 1
-
A004123[n_]:= A004123[n]= Sum[2^k*k!*StirlingS2[n-1,k], {k,0,n-1}];
A174278[n_]:= Sum[A004123[j], {j,0,n}];
Table[A174278[n], {n,30}] (* G. C. Greubel, Mar 25 2022 *)
-
def A004123(n): return sum(stirling_number2(n-1, k)*(2^k)*factorial(k) for k in (0..n-1))
def A174278(n): return sum(A004123(j) for j in (0..n))
[A174278(n) for n in (1..30)] # G. C. Greubel, Mar 25 2022
A088794
Coefficient of x^n in A(x)^(2n) is A004123(n); self-convolution is A088222.
Original entry on oeis.org
1, 1, 1, 4, 30, 305, 3905, 59828, 1063728, 21497921, 486476766, 12184618776, 334684804952, 10005219881472, 323438539163521, 11244331792094312, 418375698771595037, 16590419690069321454, 698526596162530976512
Offset: 0
A131689
Triangle of numbers T(n,k) = k!*Stirling2(n,k) = A000142(k)*A048993(n,k) read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 6, 6, 0, 1, 14, 36, 24, 0, 1, 30, 150, 240, 120, 0, 1, 62, 540, 1560, 1800, 720, 0, 1, 126, 1806, 8400, 16800, 15120, 5040, 0, 1, 254, 5796, 40824, 126000, 191520, 141120, 40320, 0, 1, 510, 18150, 186480, 834120, 1905120, 2328480, 1451520, 362880
Offset: 0
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 0 1
2: 0 1 2
3: 0 1 6 6
4: 0 1 14 36 24
5: 0 1 30 150 240 120
6: 0 1 62 540 1560 1800 720
7: 0 1 126 1806 8400 16800 15120 5040
8: 0 1 254 5796 40824 126000 191520 141120 40320
9: 0 1 510 18150 186480 834120 1905120 2328480 1451520 362880
10: 0 1 1022 55980 818520 5103000 16435440 29635200 30240000 16329600 3628800
... reformatted and extended. - _Wolfdieter Lang_, Mar 31 2017
From _Peter Bala_, Feb 04 2018: (Start)
T(4,2) = 14 alignments of length 2 of 4 strings of length 1. Examples include
(i) A - (ii) A - (iii) A -
B - B - - B
C - - C - C
- D - D - D
There are C(4,1) = 4 alignments of type (i) with a single gap character - in column 1, C(4,2) = 6 alignments of type (ii) with two gap characters in column 1 and C(4,3) = 4 alignments of type (iii) with three gap characters in column 1, giving a total of 4 + 6 + 4 = 14 alignments. (End)
- Vincenzo Librandi, Rows n = 0..100, flattened
- Peter Bala, Deformations of the Hadamard product of power series
- F. Brenti and V. Welker, f-vectors of barycentric subdivisions, arXiv:math/0606356 [math.CO], Math. Z., 259(4), 849-865, 2008.
- M. Dukes and C. D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016.
- Germain Kreweras, Une dualité élémentaire souvent utile dans les problèmes combinatoires, Mathématiques et Sciences Humaines 3 (1963): 31-41.
- Jerry Metzger and Thomas Richards, A Prisoner Problem Variation, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.7.
- Massimo Nocentini, An algebraic and combinatorial study of some infinite sequences of numbers supported by symbolic and logic computation, PhD Thesis, University of Florence, 2019. See Ex. 36.
- Mircea Dan Rus, Yet another note on notation, arXiv:2501.08762 [math.HO], 2025. See p. 6.
- J. B. Slowinski, The Number of Multiple Alignments, Molecular Phylogenetics and Evolution 10:2 (1998), 264-266. doi:10.1006/mpev.1998.0522
- M. Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq. 14 (2011) # 11.9.7.
- Wikipedia, Barycentric subdivision
- Wikipedia, Simplicial complex
- Wikipedia, Simplex
- Gus Wiseman, Sequences counting and ranking compositions by the patterns they match or avoid.
Columns k=0..10 are
A000007,
A000012,
A000918,
A001117,
A000919,
A001118,
A000920,
A135456,
A133068,
A133360,
A133132,
Case m=1 of the polynomials defined in
A278073.
Classes of patterns:
-
A032011 = distinct multiplicities
-
function T(n, k)
if k < 0 || k > n return 0 end
if n == 0 && k == 0 return 1 end
k*(T(n-1, k-1) + T(n-1, k))
end
for n in 0:7
println([T(n, k) for k in 0:n])
end
# Peter Luschny, Mar 26 2020
-
A131689 := (n,k) -> Stirling2(n,k)*k!: # Peter Luschny, Sep 17 2011
# Alternatively:
A131689_row := proc(n) 1/(1-t*(exp(x)-1)); expand(series(%,x,n+1)); n!*coeff(%,x,n); PolynomialTools:-CoefficientList(%,t) end:
for n from 0 to 9 do A131689_row(n) od; # Peter Luschny, Jan 23 2017
-
t[n_, k_] := k!*StirlingS2[n, k]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 25 2014 *)
T[n_, k_] := If[n <= 0 || k <= 0, Boole[n == 0 && k == 0], Sum[(-1)^(i + k) Binomial[k, i] i^(n + k), {i, 0, k}]]; (* Michael Somos, Jul 08 2018 *)
-
{T(n, k) = if( n<0, 0, sum(i=0, k, (-1)^(k + i) * binomial(k, i) * i^n))};
/* Michael Somos, Jul 08 2018 */
-
@cached_function
def F(n): # Fubini polynomial
R. = PolynomialRing(ZZ)
if n == 0: return R(1)
return R(sum(binomial(n, k)*F(n - k)*x for k in (1..n)))
for n in (0..9): print(F(n).list()) # Peter Luschny, May 21 2021
A050351
Number of 3-level labeled linear rooted trees with n leaves.
Original entry on oeis.org
1, 1, 5, 37, 365, 4501, 66605, 1149877, 22687565, 503589781, 12420052205, 336947795317, 9972186170765, 319727684645461, 11039636939221805, 408406422098722357, 16116066766061589965, 675700891505466507541
Offset: 0
G.f. = 1 + x + 5*x^2 + 37*x^3 + 365*x^4 + 4501*x^5 + 66605*x^6 + ...
- T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
- G. C. Greubel, Table of n, a(n) for n = 0..390
- Robert Gill, The number of elements in a generalized partition semilattice, Discrete mathematics 186.1-3 (1998): 125-134. See Example 1.
- S. Giraudo, Combinatorial operads from monoids, arXiv preprint arXiv:1306.6938 [math.CO], 2013.
- Marian Muresan, A concrete approach to classical analysis, CMS Books in Mathematics (2009) Table 10.2
- Norihiro Nakashima, Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, Order 21 (2004), 83-89.
- Index entries for sequences related to rooted trees
-
with(combstruct); SeqSeqSetL := [T, {T=Sequence(S), S=Sequence(U,card >= 1), U=Set(Z,card >=1)},labeled];
-
With[{nn=20},CoefficientList[Series[(2-E^x)/(3-2*E^x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 29 2012 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1/(2 - 1/(2 - Exp[x])), {x, 0, n}]]; (* Michael Somos, Nov 28 2014 *)
-
{a(n) = if( n<0, 0, n! * polcoeff( 1/(2 - 1/(2 - exp(x + x * O(x^n)))), n))};
-
{a(n)=if(n==0, 1, (1/6)*round(suminf(k=1, k^n * (2/3)^k *1.)))} \\ Paul D. Hanna, Nov 28 2014
-
A050351 = lambda n: sum(stirling_number2(n,k)*(2^(k-1))*factorial(k) for k in (0..n)) if n>0 else 1
[A050351(n) for n in (0..17)] # Peter Luschny, Jan 18 2016
A094417
Generalized ordered Bell numbers Bo(4,n).
Original entry on oeis.org
1, 4, 36, 484, 8676, 194404, 5227236, 163978084, 5878837476, 237109864804, 10625889182436, 523809809059684, 28168941794178276, 1641079211868751204, 102961115527874385636, 6921180217049667005284, 496267460209336700111076, 37807710659221213027893604
Offset: 0
-
m:=20; R:=LaurentSeriesRing(RationalField(), m); b:=Coefficients(R!(1/(5 - 4*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // Bruno Berselli, Mar 17 2014
-
a:= proc(n) option remember;
`if`(n=0, 1, 4* add(binomial(n, k) *a(k), k=0..n-1))
end:
seq(a(n), n=0..20);
-
max = 16; f[x_] := 1/(5-4*E^x); CoefficientList[Series[f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Nov 14 2011, after g.f. *)
-
my(N=25,x='x+O('x^N)); Vec(serlaplace(1/(5 - 4*exp(x)))) \\ Joerg Arndt, Jan 15 2024
-
def A094416(n,k): return sum(factorial(j)*n^j*stirling_number2(k,j) for j in range(k+1)) # array
def A094417(k): return A094416(4,k)
[A094417(n) for n in range(31)] # G. C. Greubel, Jan 12 2024
A094416
Array read by antidiagonals: generalized ordered Bell numbers Bo(r,n).
Original entry on oeis.org
1, 2, 3, 3, 10, 13, 4, 21, 74, 75, 5, 36, 219, 730, 541, 6, 55, 484, 3045, 9002, 4683, 7, 78, 905, 8676, 52923, 133210, 47293, 8, 105, 1518, 19855, 194404, 1103781, 2299754, 545835, 9, 136, 2359, 39390, 544505, 5227236, 26857659, 45375130, 7087261
Offset: 1
Array begins as:
1, 3, 13, 75, 541, 4683, 47293, ...
2, 10, 74, 730, 9002, 133210, 2299754, ...
3, 21, 219, 3045, 52923, 1103781, 26857659, ...
4, 36, 484, 8676, 194404, 5227236, 163978084, ...
5, 55, 905, 19855, 544505, 17919055, 687978905, ...
6, 78, 1518, 39390, 1277646, 49729758, 2258233998, ...
- G. C. Greubel, Antidiagonals n = 1..50, flattened
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- P. Blasiak, K. A. Penson and A. I. Solomon, Dobinski-type relations and the log-normal distribution, arXiv:quant-ph/0303030, 2003.
- C. G. Bower, Transforms
-
A094416:= func< n,k | (&+[Factorial(j)*n^j*StirlingSecond(k,j): j in [0..k]]) >;
[A094416(n-k+1,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jan 12 2024
-
Bo[, 0]=1; Bo[r, n_]:= Bo[r, n]= r*Sum[Binomial[n,k] Bo[r,n-k], {k, n}];
Table[Bo[r-n+1, n], {r, 10}, {n, r}] // Flatten (* Jean-François Alcover, Nov 03 2018 *)
-
# The Akiyama-Tanigawa algorithm applied to the powers of r + 1
# generates the rows. Adds one row (r=0) and one column (n=0).
# Adapted from Peter Luschny on A371568.
def f(n, r): return (r + 1)**n
def ATtransform(r, len, f):
A = [0] * len
R = [0] * len
for n in range(len):
R[n] = f(n, r)
for j in range(n, 0, -1):
R[j - 1] = j * (R[j] - R[j - 1])
A[n] = R[0]
return A
for r in range(8): print([r], ATtransform(r, 8, f)) # Shel Kaphan, May 03 2024
-
def A094416(n,k): return sum(factorial(j)*n^j*stirling_number2(k,j) for j in range(k+1)) # array
flatten([[A094416(n-k+1,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Jan 12 2024
A305404
Expansion of Sum_{k>=0} (2*k - 1)!!*x^k/Product_{j=1..k} (1 - j*x).
Original entry on oeis.org
1, 1, 4, 25, 217, 2416, 32839, 527185, 9761602, 204800551, 4801461049, 124402647370, 3529848676237, 108859319101261, 3625569585663484, 129689000146431205, 4958830249864725997, 201834650901695603296, 8712774828941647677019, 397596632650906687905565
Offset: 0
-
b:= proc(n, m) option remember;
`if`(n=0, doublefactorial(2*m-1), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..23); # Alois P. Heinz, Aug 04 2021
-
nmax = 19; CoefficientList[Series[Sum[(2 k - 1)!! x^k/Product[1 - j x, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
nmax = 19; CoefficientList[Series[1/Sqrt[3 - 2 Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] (2 k - 1)!!, {k, 0, n}], {n, 0, 19}]
A201339
Expansion of e.g.f. exp(x) / (3 - 2*exp(x)).
Original entry on oeis.org
1, 3, 15, 111, 1095, 13503, 199815, 3449631, 68062695, 1510769343, 37260156615, 1010843385951, 29916558512295, 959183053936383, 33118910817665415, 1225219266296167071, 48348200298184769895, 2027102674516399522623, 89990106205541777926215, 4216915299772659459872991
Offset: 0
E.g.f.: E(x) = 1 + 3*x + 15*x^2/2! + 111*x^3/3! + 1095*x^4/4! + 13503*x^5/5! + ...
O.g.f.: A(x) = 1 + 3*x + 15*x^2 + 111*x^3 + 1095*x^4 + 13503*x^5 + ...
where A(x) = 1 + 3*x/(1+x) + 2!*3^2*x^2/((1+x)*(1+2*x)) + 3!*3^3*x^3/((1+x)*(1+2*x)*(1+3*x)) + 4!*3^4*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
-
[&+[(-1)^(n-j)*3^j*Factorial(j)*StirlingSecond(n,j): j in [0..n]]: n in [0..20]]; // G. C. Greubel, Jun 08 2020
-
seq(coeff(series( 1/(3*exp(-x) -2) , x, n+1)*n!, x, n), n = 0..30); # G. C. Greubel, Jun 08 2020
-
Table[Sum[(-1)^(n-k)*3^k*StirlingS2[n,k]*k!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 13 2013 *)
With[{nn=20},CoefficientList[Series[Exp[x]/(3-2Exp[x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 16 2025 *)
-
{a(n)=n!*polcoeff(exp(x+x*O(x^n))/(3 - 2*exp(x+x*O(x^n))), n)}
-
{a(n)=polcoeff(sum(m=0, n, 3^m*m!*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
-
{Stirling2(n, k)=if(k<0||k>n, 0, sum(i=0, k, (-1)^i*binomial(k, i)/k!*(k-i)^n))}
{a(n)=sum(k=0, n, (-1)^(n-k)*3^k*Stirling2(n, k)*k!)}
-
[sum( (-1)^(n-j)*3^j*factorial(j)*stirling_number2(n,j) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Jun 08 2020
Showing 1-10 of 54 results.
Comments