A346982
Expansion of e.g.f. 1 / (4 - 3 * exp(x))^(1/3).
Original entry on oeis.org
1, 1, 5, 41, 477, 7201, 133685, 2945881, 75145677, 2177900241, 70687244965, 2539879312521, 100086803174077, 4291845333310081, 198954892070938645, 9914294755149067961, 528504758009562261677, 30010032597449931644721, 1808359960001658961070725
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (3*n-2)*g(n-1)) end:
b:= proc(n, m) option remember;
`if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 09 2021
-
nmax = 18; CoefficientList[Series[1/(4 - 3 Exp[x])^(1/3), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] 3^k Pochhammer[1/3, k], {k, 0, n}], {n, 0, 18}]
A346985
Expansion of e.g.f. 1 / (7 - 6 * exp(x))^(1/6).
Original entry on oeis.org
1, 1, 8, 113, 2325, 62896, 2109143, 84403033, 3924963750, 207976793991, 12369246804853, 815880360117978, 59107920881218525, 4665585774576259261, 398534278371999103888, 36627974592437584634573, 3603954453161886215458025, 377983931878997401821759456, 42095013846928585982896180123
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (6*n-5)*g(n-1)) end:
b:= proc(n, m) option remember;
`if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 09 2021
-
nmax = 18; CoefficientList[Series[1/(7 - 6 Exp[x])^(1/6), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] 6^k Pochhammer[1/6, k], {k, 0, n}], {n, 0, 18}]
-
a[n]:=if n=0 then 1 else (1/n)*sum(binomial(n,k)*(n+5*k)*a[k],k,0,n-1);
makelist(a[n],n,0,50); /* Tani Akinari, Aug 22 2023 */
A354242
Expansion of e.g.f. 1/sqrt(5 - 4 * exp(x)).
Original entry on oeis.org
1, 2, 14, 158, 2486, 50222, 1239254, 36126638, 1214933846, 46299580142, 1971815255894, 92809525295918, 4784166929982806, 268050260650705262, 16219498558371118934, 1054102762745609325998, 73229184033780135425366, 5415407651703010175897582
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(5-4*exp(x))))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, binomial(2*k, k)*(exp(x)-1)^k)))
-
a(n) = sum(k=0, n, (2*k)!*stirling(n, k, 2)/k!);
A346984
Expansion of e.g.f. 1 / (6 - 5 * exp(x))^(1/5).
Original entry on oeis.org
1, 1, 7, 85, 1495, 34477, 983983, 33476437, 1322441575, 59492222077, 3002578396255, 168005805229285, 10321907081030167, 690761732852321677, 50015387402165694607, 3895721046926471861365, 324805103526730206129607, 28861947117644330678207389, 2722944810091827410698112959
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (5*n-4)*g(n-1)) end:
b:= proc(n, m) option remember;
`if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 09 2021
-
nmax = 18; CoefficientList[Series[1/(6 - 5 Exp[x])^(1/5), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] 5^k Pochhammer[1/5, k], {k, 0, n}], {n, 0, 18}]
A354252
Expansion of e.g.f. 1/sqrt(7 - 6 * exp(x)).
Original entry on oeis.org
1, 3, 30, 489, 11127, 325218, 11612595, 489926559, 23846152332, 1315294430043, 81078316924035, 5523729981650004, 412148874577007037, 33425421047034028743, 2927620572178735480350, 275410244285003264624949, 27695140477706524122414867
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(7-6*exp(x))))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, binomial(2*k, k)*(3*(exp(x)-1)/2)^k)))
-
a(n) = sum(k=0, n, (3/2)^k*(2*k)!*stirling(n, k, 2)/k!);
A346978
Expansion of e.g.f. 1 / sqrt(1 + 2 * log(1 - x)).
Original entry on oeis.org
1, 1, 4, 26, 234, 2694, 37812, 626352, 11962164, 258787812, 6255195168, 167072685240, 4886611129320, 155335056242040, 5332298685827760, 196590247328769120, 7747254471910795920, 324986515253994589200, 14458392906960271354560, 679977065168639138610720
Offset: 0
-
nmax = 19; CoefficientList[Series[1/Sqrt[1 + 2 Log[1 - x]], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Abs[StirlingS1[n, k]] (2 k - 1)!!, {k, 0, n}], {n, 0, 19}]
A320343
Expansion of e.g.f. 1/sqrt(1 - 2*log(1 + x)).
Original entry on oeis.org
1, 1, 2, 8, 42, 294, 2472, 24828, 286164, 3751428, 54864408, 887989200, 15731200680, 303068103480, 6304498706880, 140890167340560, 3365469544248720, 85585469309951760, 2308349518803845280, 65819488298810181120, 1978202007765686904480, 62505106242073569018720, 2071320752120227622985600
Offset: 0
-
seq(n!*coeff(series(1/sqrt(1-2*log(1+x)),x=0,23),x,n),n=0..22); # Paolo P. Lava, Jan 29 2019
-
nmax = 22; CoefficientList[Series[1/Sqrt[1 - 2 Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] (2 k - 1)!!, {k, 0, n}], {n, 0, 22}]
A346983
Expansion of e.g.f. 1 / (5 - 4 * exp(x))^(1/4).
Original entry on oeis.org
1, 1, 6, 61, 891, 16996, 400251, 11217781, 364638336, 13486045291, 559192836771, 25691965808026, 1295521405067181, 71131584836353861, 4224255395774155566, 269791923787785076921, 18439806740525320993551, 1342957106015632474616956, 103824389511747541791086511
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (4*n-3)*g(n-1)) end:
b:= proc(n, m) option remember;
`if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 09 2021
-
nmax = 18; CoefficientList[Series[1/(5 - 4 Exp[x])^(1/4), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] 4^k Pochhammer[1/4, k], {k, 0, n}], {n, 0, 18}]
A352117
Expansion of e.g.f. 1/sqrt(2 - exp(2*x)).
Original entry on oeis.org
1, 1, 5, 37, 377, 4921, 78365, 1473277, 31938737, 784384561, 21523937525, 652667322517, 21672312694697, 782133969325801, 30481907097849485, 1275870745561131757, 57083444567425884257, 2718602143583362124641, 137315150097164841942245
Offset: 0
-
m = 18; Range[0, m]! * CoefficientList[Series[(2 - Exp[2*x])^(-1/2), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
-
a[n]:=if n=0 then 1 else sum(a[n-k]*(1-k/n/2)*binomial(n,k)*2^k,k,1,n);
makelist(a[n],n,0,50); /* Tani Akinari, Sep 06 2023 */
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(2-exp(2*x))))
-
a(n) = sum(k=0, n, 2^(n-k)*prod(j=0, k-1, 2*j+1)*stirling(n, k, 2));
A354253
Expansion of e.g.f. 1/sqrt(9 - 8 * exp(x)).
Original entry on oeis.org
1, 4, 52, 1108, 32980, 1261204, 58928212, 3253363348, 207225008980, 14958174725524, 1206698072485972, 107589343503498388, 10505997552329149780, 1115087729794287434644, 127819745001180490920532, 15736779719362919373550228, 2071062794354825889656471380
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(9-8*exp(x))))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, binomial(2*k, k)*(2*(exp(x)-1))^k)))
-
a(n) = sum(k=0, n, 2^k*(2*k)!*stirling(n, k, 2)/k!);
Showing 1-10 of 14 results.
Comments