A131689
Triangle of numbers T(n,k) = k!*Stirling2(n,k) = A000142(k)*A048993(n,k) read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 6, 6, 0, 1, 14, 36, 24, 0, 1, 30, 150, 240, 120, 0, 1, 62, 540, 1560, 1800, 720, 0, 1, 126, 1806, 8400, 16800, 15120, 5040, 0, 1, 254, 5796, 40824, 126000, 191520, 141120, 40320, 0, 1, 510, 18150, 186480, 834120, 1905120, 2328480, 1451520, 362880
Offset: 0
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 0 1
2: 0 1 2
3: 0 1 6 6
4: 0 1 14 36 24
5: 0 1 30 150 240 120
6: 0 1 62 540 1560 1800 720
7: 0 1 126 1806 8400 16800 15120 5040
8: 0 1 254 5796 40824 126000 191520 141120 40320
9: 0 1 510 18150 186480 834120 1905120 2328480 1451520 362880
10: 0 1 1022 55980 818520 5103000 16435440 29635200 30240000 16329600 3628800
... reformatted and extended. - _Wolfdieter Lang_, Mar 31 2017
From _Peter Bala_, Feb 04 2018: (Start)
T(4,2) = 14 alignments of length 2 of 4 strings of length 1. Examples include
(i) A - (ii) A - (iii) A -
B - B - - B
C - - C - C
- D - D - D
There are C(4,1) = 4 alignments of type (i) with a single gap character - in column 1, C(4,2) = 6 alignments of type (ii) with two gap characters in column 1 and C(4,3) = 4 alignments of type (iii) with three gap characters in column 1, giving a total of 4 + 6 + 4 = 14 alignments. (End)
- Vincenzo Librandi, Rows n = 0..100, flattened
- Peter Bala, Deformations of the Hadamard product of power series
- F. Brenti and V. Welker, f-vectors of barycentric subdivisions, arXiv:math/0606356 [math.CO], Math. Z., 259(4), 849-865, 2008.
- M. Dukes and C. D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016.
- Germain Kreweras, Une dualité élémentaire souvent utile dans les problèmes combinatoires, Mathématiques et Sciences Humaines 3 (1963): 31-41.
- Jerry Metzger and Thomas Richards, A Prisoner Problem Variation, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.7.
- Massimo Nocentini, An algebraic and combinatorial study of some infinite sequences of numbers supported by symbolic and logic computation, PhD Thesis, University of Florence, 2019. See Ex. 36.
- Mircea Dan Rus, Yet another note on notation, arXiv:2501.08762 [math.HO], 2025. See p. 6.
- J. B. Slowinski, The Number of Multiple Alignments, Molecular Phylogenetics and Evolution 10:2 (1998), 264-266. doi:10.1006/mpev.1998.0522
- M. Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq. 14 (2011) # 11.9.7.
- Wikipedia, Barycentric subdivision
- Wikipedia, Simplicial complex
- Wikipedia, Simplex
- Gus Wiseman, Sequences counting and ranking compositions by the patterns they match or avoid.
Columns k=0..10 are
A000007,
A000012,
A000918,
A001117,
A000919,
A001118,
A000920,
A135456,
A133068,
A133360,
A133132,
Case m=1 of the polynomials defined in
A278073.
Classes of patterns:
-
A032011 = distinct multiplicities
-
function T(n, k)
if k < 0 || k > n return 0 end
if n == 0 && k == 0 return 1 end
k*(T(n-1, k-1) + T(n-1, k))
end
for n in 0:7
println([T(n, k) for k in 0:n])
end
# Peter Luschny, Mar 26 2020
-
A131689 := (n,k) -> Stirling2(n,k)*k!: # Peter Luschny, Sep 17 2011
# Alternatively:
A131689_row := proc(n) 1/(1-t*(exp(x)-1)); expand(series(%,x,n+1)); n!*coeff(%,x,n); PolynomialTools:-CoefficientList(%,t) end:
for n from 0 to 9 do A131689_row(n) od; # Peter Luschny, Jan 23 2017
-
t[n_, k_] := k!*StirlingS2[n, k]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 25 2014 *)
T[n_, k_] := If[n <= 0 || k <= 0, Boole[n == 0 && k == 0], Sum[(-1)^(i + k) Binomial[k, i] i^(n + k), {i, 0, k}]]; (* Michael Somos, Jul 08 2018 *)
-
{T(n, k) = if( n<0, 0, sum(i=0, k, (-1)^(k + i) * binomial(k, i) * i^n))};
/* Michael Somos, Jul 08 2018 */
-
@cached_function
def F(n): # Fubini polynomial
R. = PolynomialRing(ZZ)
if n == 0: return R(1)
return R(sum(binomial(n, k)*F(n - k)*x for k in (1..n)))
for n in (0..9): print(F(n).list()) # Peter Luschny, May 21 2021
A094418
Generalized ordered Bell numbers Bo(5,n).
Original entry on oeis.org
1, 5, 55, 905, 19855, 544505, 17919055, 687978905, 30187495855, 1490155456505, 81732269223055, 4931150091426905, 324557348772511855, 23141780973332248505, 1776997406800302687055, 146197529083891406394905, 12829862285488250150167855, 1196280147496701351115120505
Offset: 0
-
A094416:= func< n,k | (&+[Factorial(j)*n^j*StirlingSecond(k,j): j in [0..k]]) >;
A094418:= func< k | A094416(5,k) >;
[A094418(n): n in [0..30]]; // G. C. Greubel, Jan 12 2024
-
t = 30; Range[0, t]! CoefficientList[Series[1/(6 - 5 Exp[x]), {x, 0, t}], x] (* Vincenzo Librandi, Mar 16 2014 *)
-
my(N=25,x='x+O('x^N)); Vec(serlaplace(1/(6 - 5*exp(x)))) \\ Joerg Arndt, Jan 15 2024
-
def A094416(n,k): return sum(factorial(j)*n^j*stirling_number2(k,j) for j in range(k+1)) # array
def A094418(k): return A094416(5,k)
[A094418(n) for n in range(31)] # G. C. Greubel, Jan 12 2024
A094419
Generalized ordered Bell numbers Bo(6,n).
Original entry on oeis.org
1, 6, 78, 1518, 39390, 1277646, 49729758, 2258233998, 117196187550, 6842432930766, 443879517004638, 31674687990494478, 2465744921215207710, 207943837884583262286, 18885506918597311159518, 1837699347783655374914958, 190743171535070652261555870, 21035482423625416328497024206
Offset: 0
-
A094416:= func< n,k | (&+[Factorial(j)*n^j*StirlingSecond(k,j): j in [0..k]]) >;
A094419:= func< k | A094416(6,k) >;
[A094419(n): n in [0..30]]; // G. C. Greubel, Jan 12 2024
-
t = 30; Range[0, t]! CoefficientList[Series[1/(7 - 6 Exp[x]),{x, 0, t}], x] (* Vincenzo Librandi, Mar 16 2014 *)
-
my(N=25,x='x+O('x^N)); Vec(serlaplace(1/(7-6*exp(x)))) \\ Joerg Arndt, Jan 15 2024
-
a(n) = (-1)^(n+1)*polylog(-n, 7/6)/7; \\ Seiichi Manyama, Jun 01 2025
-
def A094416(n,k): return sum(factorial(j)*n^j*stirling_number2(k,j) for j in range(k+1)) # array
def A094419(k): return A094416(6,k)
[A094419(n) for n in range(31)] # G. C. Greubel, Jan 12 2024
A094416
Array read by antidiagonals: generalized ordered Bell numbers Bo(r,n).
Original entry on oeis.org
1, 2, 3, 3, 10, 13, 4, 21, 74, 75, 5, 36, 219, 730, 541, 6, 55, 484, 3045, 9002, 4683, 7, 78, 905, 8676, 52923, 133210, 47293, 8, 105, 1518, 19855, 194404, 1103781, 2299754, 545835, 9, 136, 2359, 39390, 544505, 5227236, 26857659, 45375130, 7087261
Offset: 1
Array begins as:
1, 3, 13, 75, 541, 4683, 47293, ...
2, 10, 74, 730, 9002, 133210, 2299754, ...
3, 21, 219, 3045, 52923, 1103781, 26857659, ...
4, 36, 484, 8676, 194404, 5227236, 163978084, ...
5, 55, 905, 19855, 544505, 17919055, 687978905, ...
6, 78, 1518, 39390, 1277646, 49729758, 2258233998, ...
- G. C. Greubel, Antidiagonals n = 1..50, flattened
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- P. Blasiak, K. A. Penson and A. I. Solomon, Dobinski-type relations and the log-normal distribution, arXiv:quant-ph/0303030, 2003.
- C. G. Bower, Transforms
-
A094416:= func< n,k | (&+[Factorial(j)*n^j*StirlingSecond(k,j): j in [0..k]]) >;
[A094416(n-k+1,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jan 12 2024
-
Bo[, 0]=1; Bo[r, n_]:= Bo[r, n]= r*Sum[Binomial[n,k] Bo[r,n-k], {k, n}];
Table[Bo[r-n+1, n], {r, 10}, {n, r}] // Flatten (* Jean-François Alcover, Nov 03 2018 *)
-
# The Akiyama-Tanigawa algorithm applied to the powers of r + 1
# generates the rows. Adds one row (r=0) and one column (n=0).
# Adapted from Peter Luschny on A371568.
def f(n, r): return (r + 1)**n
def ATtransform(r, len, f):
A = [0] * len
R = [0] * len
for n in range(len):
R[n] = f(n, r)
for j in range(n, 0, -1):
R[j - 1] = j * (R[j] - R[j - 1])
A[n] = R[0]
return A
for r in range(8): print([r], ATtransform(r, 8, f)) # Shel Kaphan, May 03 2024
-
def A094416(n,k): return sum(factorial(j)*n^j*stirling_number2(k,j) for j in range(k+1)) # array
flatten([[A094416(n-k+1,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Jan 12 2024
A050353
Number of 5-level labeled linear rooted trees with n leaves.
Original entry on oeis.org
1, 1, 9, 121, 2169, 48601, 1306809, 40994521, 1469709369, 59277466201, 2656472295609, 130952452264921, 7042235448544569, 410269802967187801, 25740278881968596409, 1730295054262416751321, 124066865052334175027769
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!(Laplace( (4-3*Exp(x))/(5-4*Exp(x)) ))); // G. C. Greubel, Jun 08 2020
-
seq(coeff(series( (4-3*exp(x))/(5-4*exp(x)), x, n+1)*n!, x, n), n = 0..20); # G. C. Greubel, Jun 08 2020
-
max = 16; f[x_] := (4-3*E^x) / (5-4*E^x); CoefficientList[ Series[ f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Nov 14 2011, after g.f. *)
-
a(n)=n!*if(n<0,0,polcoeff((4-3*exp(x))/(5-4*exp(x))+O(x^(n+1)),n))
-
{a(n)=if(n==0,1,(1/20)*round(suminf(k=1, k^n * (4/5)^k *1.)))} \\ Paul D. Hanna, Nov 28 2014
-
[1]+[sum( 4^(j-1)*factorial(j)*stirling_number2(n,j) for j in (1..n)) for n in (1..20)] # G. C. Greubel, Jun 08 2020
A201365
Expansion of e.g.f. exp(x) / (5 - 4*exp(x)).
Original entry on oeis.org
1, 5, 45, 605, 10845, 243005, 6534045, 204972605, 7348546845, 296387331005, 13282361478045, 654762261324605, 35211177242722845, 2051349014835939005, 128701394409842982045, 8651475271312083756605, 620334325261670875138845, 47259638324026516284867005
Offset: 0
E.g.f.: E(x) = 1 + 5*x + 45*x^2/2! + 605*x^3/3! + 10845*x^4/4! + 243005*x^5/5! + ...
O.g.f.: A(x) = 1 + 5*x + 45*x^2 + 605*x^3 + 10845*x^4 + 243005*x^5 + ...
where A(x) = 1 + 5*x/(1+x) + 2!*5^2*x^2/((1+x)*(1+2*x)) + 3!*5^3*x^3/((1+x)*(1+2*x)*(1+3*x)) + 4!*5^4*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
-
R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!(Laplace( 1/(5*Exp(-x) -4) ))); // G. C. Greubel, Jun 08 2020
-
seq(coeff(series(1/(5*exp(-x) - 4), x, n+1)*n!, x, n), n = 0..20); # G. C. Greubel, Jun 08 2020
-
Table[Sum[(-1)^(n-k)*5^k*StirlingS2[n,k]*k!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 13 2013 *)
With[{nn=20},CoefficientList[Series[Exp[x]/(5-4Exp[x]),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jul 09 2015 *)
a[n_]:= If[n<0, 0, PolyLog[ -n, 4/5]/4]; (* Michael Somos, Apr 27 2019 *)
-
{a(n)=n!*polcoeff(exp(x+x*O(x^n))/(5 - 4*exp(x+x*O(x^n))), n)}
-
{a(n)=polcoeff(sum(m=0, n, 5^m*m!*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
-
{a(n)=sum(k=0, n, (-1)^(n-k)*5^k*stirling(n, k, 2)*k!)}
-
[sum( (-1)^(n-j)*5^j*factorial(j)*stirling_number2(n,j) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Jun 08 2020
A354242
Expansion of e.g.f. 1/sqrt(5 - 4 * exp(x)).
Original entry on oeis.org
1, 2, 14, 158, 2486, 50222, 1239254, 36126638, 1214933846, 46299580142, 1971815255894, 92809525295918, 4784166929982806, 268050260650705262, 16219498558371118934, 1054102762745609325998, 73229184033780135425366, 5415407651703010175897582
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(5-4*exp(x))))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, binomial(2*k, k)*(exp(x)-1)^k)))
-
a(n) = sum(k=0, n, (2*k)!*stirling(n, k, 2)/k!);
A255927
a(n) = (3/4) * Sum_{k>=0} (3*k)^n/4^k.
Original entry on oeis.org
1, 1, 5, 33, 285, 3081, 40005, 606033, 10491885, 204343641, 4422082005, 105265315233, 2733583519485, 76902684021801, 2329889536156005, 75629701786875633, 2618654297178083085, 96336948993312237561, 3752590641305604502005, 154294551397830418471233, 6677999524135208461382685
Offset: 0
a(5) = 729*hypergeom([2,2,2,2,2],[1,1,1,1],1/4)/16 = 3081.
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- P. Blasiak, K. A. Penson and A. I. Solomon, Dobinski-type relations and the Log-normal distribution, arXiv:quant-ph/0303030, 2003.
- P. Blasiak, K. A. Penson and A. I. Solomon, Dobinski-type relations and the Log-normal distribution, J. Phys. A: Math. Gen. 36, (2003), L273.
- Eric Weisstein's World of Mathematics, Lerch Transcendent
-
S:= series(3/(4-exp(3*x)), x, 51):
seq(coeff(S,x,n)*n!, n=0..50); # Robert Israel, Sep 03 2015
seq(add(combinat:-eulerian1(n,k)*4^k, k=0..n), n=0..20); # Peter Luschny, Jun 27 2019
-
a[n_] := 3^(n+1)/4 HurwitzLerchPhi[1/4, -n, 0];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Sep 18 2018 *)
Eulerian1[0, 0] = 1; Eulerian1[n_, k_] := Sum[(-1)^j (k-j+1)^n Binomial[n+1, j], {j, 0, k+1}]; Table[Sum[Eulerian1[n, k] 4^k, {k, 0, n}], {n, 0, 20}] (* Jean-François Alcover, Jul 13 2019, after Peter Luschny *)
-
a(n) = sum(k=0, n, stirling(n,k,2)*k!*3^(n-k)); \\ Michel Marcus, Sep 03 2015
A090356
G.f. A(x) satisfies A(x)^5 = BINOMIAL(A(x)^4); that is, the binomial transform of the coefficients in A(x)^4 yields the coefficients in A(x)^5.
Original entry on oeis.org
1, 1, 5, 45, 595, 10475, 231255, 6148495, 191276600, 6815243040, 273601200136, 12217471594856, 600580173151560, 32224787998758280, 1873909224391774760, 117388347849375956328, 7880739469498103077588, 564440024187816634143380
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 45*x^3 + 595*x^4 + 10475*x^5 + 231255*x^6 + ...
The coefficients in A(x)^4 are given by A090357 and begin
A(x)^4: [1, 4, 26, 244, 3131, 52600, 1111940, ..., A090357(n), ...].
The binomial transform of A090357 yields the coefficients of A(x)^5:
A(x)^5: [1, 5, 35, 335, 4280, 70976, 1479800, ...]
as shown by
1 = 1*1,
5 = 1*1 + 1*4,
35 = 1*1 + 2*4 + 1*26,
335 = 1*1 + 3*4 + 3*26 + 1*244,
4280 = 1*1 + 4*4 + 6*26 + 4*244 + 1*3131, ...
-
m:=40;
f:= func< n,x | Exp((&+[(&+[4^(j-1)*Factorial(j)* StirlingSecond(k,j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >;
R:=PowerSeriesRing(Rationals(), m+1); // A090356
Coefficients(R!( f(m,x) )); // G. C. Greubel, Jun 09 2023
-
nmax = 17; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^5 - A[x/(1 - x)]^4/(1 - x) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
With[{m = 40}, CoefficientList[Series[Exp[Sum[Sum[4^(j-1)*j!* StirlingS2[k,j], {j,k}]*x^k/k, {k,m+1}]], {x,0,m}], x]] (* G. C. Greubel, Jun 09 2023 *)
-
{a(n)=local(A); if(n<1,0,A=1+x+x*O(x^n); for(k=1,n,B=subst(A^4,x,x/(1-x))/(1-x)+x*O(x^n); A=A-A^5+B);polcoeff(A,n,x))}
-
m=40
def f(n, x): return exp(sum(sum(4^(j-1)*factorial(j)* stirling_number2(k,j)*x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
def A090356_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(m,x) ).list()
A090356_list(m) # G. C. Greubel, Jun 09 2023
A278075
Coefficients of the signed Fubini polynomials in ascending order, F_n(x) = Sum_{k=0..n} (-1)^n*Stirling2(n,k)*k!*(-x)^k.
Original entry on oeis.org
1, 0, 1, 0, -1, 2, 0, 1, -6, 6, 0, -1, 14, -36, 24, 0, 1, -30, 150, -240, 120, 0, -1, 62, -540, 1560, -1800, 720, 0, 1, -126, 1806, -8400, 16800, -15120, 5040, 0, -1, 254, -5796, 40824, -126000, 191520, -141120, 40320, 0, 1, -510, 18150, -186480, 834120, -1905120, 2328480, -1451520, 362880
Offset: 0
Triangle of coefficients starts:
[1]
[0, 1]
[0, -1, 2]
[0, 1, -6, 6]
[0, -1, 14, -36, 24]
[0, 1, -30, 150, -240, 120]
[0, -1, 62, -540, 1560, -1800, 720]
[0, 1, -126, 1806, -8400, 16800, -15120, 5040]
- Peter Luschny, Illustration of the polynomials.
- Peter Luschny, The Bernoulli Manifesto.
- Grzegorz Rządkowski, Bernoulli numbers and solitons - revisited, Journal of Nonlinear Mathematical Physics, (2010) 17:1, 121-126.
- J. Worpitzky, Studien über die Bernoullischen und Eulerschen Zahlen, Journal für die reine und angewandte Mathematik, 94 (1883), 203-232.
Let F(n, x) = Sum_{k=0..n} T(n,k)*x^k then, apart from possible differences in the sign or the offset, we have: F(n, -5) =
A094418(n), F(n, -4) =
A094417(n), F(n, -3) =
A032033(n), F(n, -2) =
A004123(n), F(n, -1) =
A000670(n), F(n, 0) =
A000007(n), F(n, 1) =
A000012(n), F(n, 2) =
A000629(n), F(n, 3) =
A201339(n), F(n, 4) =
A201354(n), F(n, 5) =
A201365(n).
-
function T(n, k)
if k < 0 || k > n return 0 end
if n == 0 && k == 0 return 1 end
k*(T(n-1, k-1) - T(n-1, k))
end
for n in 0:7
println([T(n,k) for k in 0:n])
end
# Peter Luschny, Mar 26 2020
-
F := (n,x) -> add((-1)^n*Stirling2(n,k)*k!*(-x)^k, k=0..n):
for n from 0 to 10 do PolynomialTools:-CoefficientList(F(n,x), x) od;
-
T[ n_, k_] := If[ n < 0 || k < 0, 0, (-1)^(n - k) k! StirlingS2[n, k]]; (* Michael Somos, Jul 08 2018 *)
-
{T(n, k) = if( n<0, 0, sum(i=0, k, (-1)^(n + i) * binomial(k, i) * i^n))};
/* Michael Somos, Jul 08 2018 */
Showing 1-10 of 27 results.
Comments