cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A131689 Triangle of numbers T(n,k) = k!*Stirling2(n,k) = A000142(k)*A048993(n,k) read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 6, 6, 0, 1, 14, 36, 24, 0, 1, 30, 150, 240, 120, 0, 1, 62, 540, 1560, 1800, 720, 0, 1, 126, 1806, 8400, 16800, 15120, 5040, 0, 1, 254, 5796, 40824, 126000, 191520, 141120, 40320, 0, 1, 510, 18150, 186480, 834120, 1905120, 2328480, 1451520, 362880
Offset: 0

Views

Author

Philippe Deléham, Sep 14 2007

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [0,1,0,2,0,3,0,4,0,5,0,6,0,7,0,...] DELTA [1,1,2,2,3,3,4,4,5,5,6,6,...] where DELTA is the operator defined in A084938; another version of A019538.
See also A019538: version with n > 0 and k > 0. - Philippe Deléham, Nov 03 2008
From Peter Bala, Jul 21 2014: (Start)
T(n,k) gives the number of (k-1)-dimensional faces in the interior of the first barycentric subdivision of the standard (n-1)-dimensional simplex. For example, the barycentric subdivision of the 1-simplex is o--o--o, with 1 interior vertex and 2 interior edges, giving T(2,1) = 1 and T(2,2) = 2.
This triangle is used when calculating the face vectors of the barycentric subdivision of a simplicial complex. Let S be an n-dimensional simplicial complex and write f_k for the number of k-dimensional faces of S, with the usual convention that f_(-1) = 1, so that F := (f_(-1), f_0, f_1,...,f_n) is the f-vector of S. If M(n) denotes the square matrix formed from the first n+1 rows and n+1 columns of the present triangle, then the vector F*M(n) is the f-vector of the first barycentric subdivision of the simplicial complex S (Brenti and Welker, Lemma 2.1). For example, the rows of Pascal's triangle A007318 (but with row and column indexing starting at -1) are the f-vectors for the standard n-simplexes. It follows that A007318*A131689, which equals A028246, is the array of f-vectors of the first barycentric subdivision of standard n-simplexes. (End)
This triangle T(n, k) appears in the o.g.f. G(n, x) = Sum_{m>=0} S(n, m)*x^m with S(n, m) = Sum_{j=0..m} j^n for n >= 1 as G(n, x) = Sum_{k=1..n} (x^k/(1 - x)^(k+2))*T(n, k). See also the Eulerian triangle A008292 with a Mar 31 2017 comment for a rewritten form. For the e.g.f. see A028246 with a Mar 13 2017 comment. - Wolfdieter Lang, Mar 31 2017
T(n,k) = the number of alignments of length k of n strings each of length 1. See Slowinski. An example is given below. Cf. A122193 (alignments of strings of length 2) and A299041 (alignments of strings of length 3). - Peter Bala, Feb 04 2018
The row polynomials R(n,x) are the Fubini polynomials. - Emanuele Munarini, Dec 05 2020
From Gus Wiseman, Feb 18 2022: (Start)
Also the number of patterns of length n with k distinct parts (or with maximum part k), where we define a pattern to be a finite sequence covering an initial interval of positive integers. For example, row n = 3 counts the following patterns:
(1,1,1) (1,2,2) (1,2,3)
(2,1,2) (1,3,2)
(2,2,1) (2,1,3)
(1,1,2) (2,3,1)
(1,2,1) (3,1,2)
(2,1,1) (3,2,1)
(End)
Regard A048994 as a lower-triangular matrix and divide each term A048994(n,k) by n!, then this is the matrix inverse. Because Sum_{k=0..n} (A048994(n,k) * x^n / n!) = A007318(x,n), Sum_{k=0..n} (A131689(n,k) * A007318(x,k)) = x^n. - Natalia L. Skirrow, Mar 23 2023
T(n,k) is the number of ordered partitions of [n] into k blocks. - Alois P. Heinz, Feb 21 2025

Examples

			The triangle T(n,k) begins:
  n\k 0 1    2     3      4       5        6        7        8        9      10 ...
  0:  1
  1:  0 1
  2:  0 1    2
  3:  0 1    6     6
  4:  0 1   14    36     24
  5:  0 1   30   150    240     120
  6:  0 1   62   540   1560    1800      720
  7:  0 1  126  1806   8400   16800    15120     5040
  8:  0 1  254  5796  40824  126000   191520   141120    40320
  9:  0 1  510 18150 186480  834120  1905120  2328480  1451520   362880
  10: 0 1 1022 55980 818520 5103000 16435440 29635200 30240000 16329600 3628800
  ... reformatted and extended. - _Wolfdieter Lang_, Mar 31 2017
From _Peter Bala_, Feb 04 2018: (Start)
T(4,2) = 14 alignments of length 2 of 4 strings of length 1. Examples include
  (i) A -    (ii) A -    (iii) A -
      B -         B -          - B
      C -         - C          - C
      - D         - D          - D
There are C(4,1) = 4 alignments of type (i) with a single gap character - in column 1, C(4,2) = 6 alignments of type (ii) with two gap characters in column 1 and C(4,3) = 4 alignments of type (iii) with three gap characters in column 1, giving a total of 4 + 6 + 4 = 14 alignments. (End)
		

Crossrefs

Case m=1 of the polynomials defined in A278073.
Cf. A000142 (diagonal), A000670 (row sums), A000012 (alternating row sums), A210029 (central terms).
Cf. A008292, A028246 (o.g.f. and e.g.f. of sums of powers).
A version for partitions is A116608, or by maximum A008284.
A version for compositions is A235998, or by maximum A048004.
Classes of patterns:
- A000142 = strict
- A005649 = anti-run, complement A069321
- A019536 = necklace
- A032011 = distinct multiplicities
- A060223 = Lyndon
- A226316 = (1,2,3)-avoiding, weakly A052709, complement A335515
- A296975 = aperiodic
- A345194 = alternating, up/down A350354, complement A350252
- A349058 = weakly alternating
- A351200 = distinct runs
- A351292 = distinct run-lengths

Programs

  • Julia
    function T(n, k)
        if k < 0 || k > n return 0 end
        if n == 0 && k == 0 return 1 end
        k*(T(n-1, k-1) + T(n-1, k))
    end
    for n in 0:7
        println([T(n, k) for k in 0:n])
    end
    # Peter Luschny, Mar 26 2020
    
  • Maple
    A131689 := (n,k) -> Stirling2(n,k)*k!: # Peter Luschny, Sep 17 2011
    # Alternatively:
    A131689_row := proc(n) 1/(1-t*(exp(x)-1)); expand(series(%,x,n+1)); n!*coeff(%,x,n); PolynomialTools:-CoefficientList(%,t) end:
    for n from 0 to 9 do A131689_row(n) od; # Peter Luschny, Jan 23 2017
  • Mathematica
    t[n_, k_] := k!*StirlingS2[n, k]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 25 2014 *)
    T[n_, k_] := If[n <= 0 || k <= 0, Boole[n == 0 && k == 0], Sum[(-1)^(i + k) Binomial[k, i] i^(n + k), {i, 0, k}]]; (* Michael Somos, Jul 08 2018 *)
  • PARI
    {T(n, k) = if( n<0, 0, sum(i=0, k, (-1)^(k + i) * binomial(k, i) * i^n))};
    /* Michael Somos, Jul 08 2018 */
    
  • SageMath
    @cached_function
    def F(n): # Fubini polynomial
        R. = PolynomialRing(ZZ)
        if n == 0: return R(1)
        return R(sum(binomial(n, k)*F(n - k)*x for k in (1..n)))
    for n in (0..9): print(F(n).list()) # Peter Luschny, May 21 2021

Formula

T(n,k) = k*(T(n-1,k-1) + T(n-1,k)) with T(0,0)=1. Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A000629(n), A033999(n), A000007(n), A000670(n), A004123(n+1), A032033(n), A094417(n), A094418(n), A094419(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6 respectively. [corrected by Philippe Deléham, Feb 11 2013]
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000142(n), A000670(n), A122704(n) for x=-1, 0, 1, 2 respectively. - Philippe Deléham, Oct 09 2007
Sum_{k=0..n} (-1)^k*T(n,k)/(k+1) = Bernoulli numbers A027641(n)/A027642(n). - Peter Luschny, Sep 17 2011
G.f.: F(x,t) = 1 + x*t + (x+x^2)*t^2/2! + (x+6*x^2+6*x^3)*t^3/3! + ... = Sum_{n>=0} R(n,x)*t^n/n!.
The row polynomials R(n,x) satisfy the recursion R(n+1,x) = (x+x^2)*R'(n,x) + x*R(n,x) where ' indicates differentiation with respect to x. - Philippe Deléham, Feb 11 2013
T(n,k) = [t^k] (n! [x^n] (1/(1-t*(exp(x)-1)))). - Peter Luschny, Jan 23 2017
The n-th row polynomial has the form x o x o ... o x (n factors), where o denotes the black diamond multiplication operator of Dukes and White. See also Bala, Example E8. - Peter Bala, Jan 08 2018

A094418 Generalized ordered Bell numbers Bo(5,n).

Original entry on oeis.org

1, 5, 55, 905, 19855, 544505, 17919055, 687978905, 30187495855, 1490155456505, 81732269223055, 4931150091426905, 324557348772511855, 23141780973332248505, 1776997406800302687055, 146197529083891406394905, 12829862285488250150167855, 1196280147496701351115120505
Offset: 0

Views

Author

Ralf Stephan, May 02 2004

Keywords

Comments

Fifth row of array A094416, which has more information.

Crossrefs

Programs

  • Magma
    A094416:= func< n,k | (&+[Factorial(j)*n^j*StirlingSecond(k,j): j in [0..k]]) >;
    A094418:= func< k | A094416(5,k) >;
    [A094418(n): n in [0..30]]; // G. C. Greubel, Jan 12 2024
    
  • Mathematica
    t = 30; Range[0, t]! CoefficientList[Series[1/(6 - 5 Exp[x]), {x, 0, t}], x] (* Vincenzo Librandi, Mar 16 2014 *)
  • PARI
    my(N=25,x='x+O('x^N)); Vec(serlaplace(1/(6 - 5*exp(x)))) \\ Joerg Arndt, Jan 15 2024
  • SageMath
    def A094416(n,k): return sum(factorial(j)*n^j*stirling_number2(k,j) for j in range(k+1)) # array
    def A094418(k): return A094416(5,k)
    [A094418(n) for n in range(31)] # G. C. Greubel, Jan 12 2024
    

Formula

E.g.f.: 1/(6 - 5*exp(x)).
a(n) = Sum_{k=0..n} A131689(n,k) * 5^k. - Philippe Deléham, Nov 03 2008
a(n) ~ n! / (6*(log(6/5))^(n+1)). - Vaclav Kotesovec, Mar 14 2014
a(0) = 1; a(n) = 5 * Sum_{k=1..n} binomial(n,k) * a(n-k). - Ilya Gutkovskiy, Jan 17 2020
a(0) = 1; a(n) = 5 * a(n-1) - 6 * Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023
From Seiichi Manyama, Jun 01 2025: (Start)
a(n) = (-1)^(n+1)/6 * Li_{-n}(6/5), where Li_{n}(x) is the polylogarithm function.
a(n) = (1/6) * Sum_{k>=0} k^n * (5/6)^k.
a(n) = (5/6) * Sum_{k=0..n} 6^k * (-1)^(n-k) * A131689(n,k) for n > 0. (End)

A094419 Generalized ordered Bell numbers Bo(6,n).

Original entry on oeis.org

1, 6, 78, 1518, 39390, 1277646, 49729758, 2258233998, 117196187550, 6842432930766, 443879517004638, 31674687990494478, 2465744921215207710, 207943837884583262286, 18885506918597311159518, 1837699347783655374914958, 190743171535070652261555870, 21035482423625416328497024206
Offset: 0

Views

Author

Ralf Stephan, May 02 2004

Keywords

Comments

Sixth row of array A094416, which has more information.

Crossrefs

Programs

  • Magma
    A094416:= func< n,k | (&+[Factorial(j)*n^j*StirlingSecond(k,j): j in [0..k]]) >;
    A094419:= func< k | A094416(6,k) >;
    [A094419(n): n in [0..30]]; // G. C. Greubel, Jan 12 2024
    
  • Mathematica
    t = 30; Range[0, t]! CoefficientList[Series[1/(7 - 6 Exp[x]),{x, 0, t}], x] (* Vincenzo Librandi, Mar 16 2014 *)
  • PARI
    my(N=25,x='x+O('x^N)); Vec(serlaplace(1/(7-6*exp(x)))) \\ Joerg Arndt, Jan 15 2024
    
  • PARI
    a(n) = (-1)^(n+1)*polylog(-n, 7/6)/7; \\ Seiichi Manyama, Jun 01 2025
  • SageMath
    def A094416(n,k): return sum(factorial(j)*n^j*stirling_number2(k,j) for j in range(k+1)) # array
    def A094419(k): return A094416(6,k)
    [A094419(n) for n in range(31)] # G. C. Greubel, Jan 12 2024
    

Formula

E.g.f.: 1/(7 - 6*exp(x)).
a(n) = Sum_{k=0..n} A131689(n,k) * 6^k. - Philippe Deléham, Nov 03 2008
a(n) ~ n! / (7*(log(7/6))^(n+1)). - Vaclav Kotesovec, Mar 14 2014
a(0) = 1; a(n) = 6 * Sum_{k=1..n} binomial(n,k) * a(n-k). - Ilya Gutkovskiy, Jan 17 2020
a(0) = 1; a(n) = 6 * a(n-1) - 7 * Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 17 2023
From Seiichi Manyama, Jun 01 2025: (Start)
a(n) = (-1)^(n+1)/7 * Li_{-n}(7/6), where Li_{n}(x) is the polylogarithm function.
a(n) = (1/7) * Sum_{k>=0} k^n * (6/7)^k.
a(n) = (6/7) * Sum_{k=0..n} 7^k * (-1)^(n-k) * A131689(n,k) for n > 0. (End)

A094416 Array read by antidiagonals: generalized ordered Bell numbers Bo(r,n).

Original entry on oeis.org

1, 2, 3, 3, 10, 13, 4, 21, 74, 75, 5, 36, 219, 730, 541, 6, 55, 484, 3045, 9002, 4683, 7, 78, 905, 8676, 52923, 133210, 47293, 8, 105, 1518, 19855, 194404, 1103781, 2299754, 545835, 9, 136, 2359, 39390, 544505, 5227236, 26857659, 45375130, 7087261
Offset: 1

Views

Author

Ralf Stephan, May 02 2004

Keywords

Comments

Also, r times the number of (r+1)-level labeled linear rooted trees with n leaves.
"AIJ" (ordered, indistinct, labeled) transform of {r,r,r,...}.
Stirling transform of r^n*n!, i.e. of e.g.f. 1/(1-r*x).
Also, Bo(r,s) is ((x*d/dx)^n)(1/(1+r-r*x)) evaluated at x=1.
r-th ordered Bell polynomial (A019538) evaluated at n.
Bo(r,n) is the n-th moment of a geometric distribution with probability parameter = 1/(r+1). Here, geometric distribution is the number of failures prior to the first success. - Geoffrey Critzer, Jan 01 2019
Row r (starting at r=0), Bo(r+1, n), is the Akiyama-Tanigawa algorithm applied to the powers of r+1. See Python program below. - Shel Kaphan, May 03 2024

Examples

			Array begins as:
  1,  3,   13,    75,     541,     4683,      47293, ...
  2, 10,   74,   730,    9002,   133210,    2299754, ...
  3, 21,  219,  3045,   52923,  1103781,   26857659, ...
  4, 36,  484,  8676,  194404,  5227236,  163978084, ...
  5, 55,  905, 19855,  544505, 17919055,  687978905, ...
  6, 78, 1518, 39390, 1277646, 49729758, 2258233998, ...
		

Crossrefs

Columns include A014105, A094421.
Main diagonal is A094420.
Antidiagonal sums are A094422.

Programs

  • Magma
    A094416:= func< n,k | (&+[Factorial(j)*n^j*StirlingSecond(k,j): j in [0..k]]) >;
    [A094416(n-k+1,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jan 12 2024
    
  • Mathematica
    Bo[, 0]=1; Bo[r, n_]:= Bo[r, n]= r*Sum[Binomial[n,k] Bo[r,n-k], {k, n}];
    Table[Bo[r-n+1, n], {r, 10}, {n, r}] // Flatten (* Jean-François Alcover, Nov 03 2018 *)
  • Python
    # The Akiyama-Tanigawa algorithm applied to the powers of r + 1
    # generates the rows. Adds one row (r=0) and one column (n=0).
    # Adapted from Peter Luschny on A371568.
    def f(n, r): return (r + 1)**n
    def ATtransform(r, len, f):
      A = [0] * len
      R = [0] * len
      for n in range(len):
          R[n] = f(n, r)
          for j in range(n, 0, -1):
              R[j - 1] = j * (R[j] - R[j - 1])
          A[n] = R[0]
      return A
    for r in range(8): print([r], ATtransform(r, 8, f)) # Shel Kaphan, May 03 2024
  • SageMath
    def A094416(n,k): return sum(factorial(j)*n^j*stirling_number2(k,j) for j in range(k+1)) # array
    flatten([[A094416(n-k+1,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Jan 12 2024
    

Formula

E.g.f.: 1/(1 + r*(1 - exp(x))).
Bo(r, n) = Sum_{k=0..n} k!*r^k*Stirling2(n, k) = 1/(r+1) * Sum_{k>=1} k^n * (r/(r+1))^k, for r>0, n>0.
Recurrence: Bo(r, n) = r * Sum_{k=1..n} C(n, k)*Bo(r, n-k), with Bo(r, 0) = 1.
Bo(r,0) = 1, Bo(r,n) = r*Bo(r,n-1) - (r+1)*Sum_{j=1..n-1} (-1)^j * binomial(n-1,j) * Bo(r,n-j). - Seiichi Manyama, Nov 17 2023

Extensions

Offset corrected by Geoffrey Critzer, Jan 01 2019

A050353 Number of 5-level labeled linear rooted trees with n leaves.

Original entry on oeis.org

1, 1, 9, 121, 2169, 48601, 1306809, 40994521, 1469709369, 59277466201, 2656472295609, 130952452264921, 7042235448544569, 410269802967187801, 25740278881968596409, 1730295054262416751321, 124066865052334175027769
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Crossrefs

Equals 1/4 * A094417(n) for n>0.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!(Laplace( (4-3*Exp(x))/(5-4*Exp(x)) ))); // G. C. Greubel, Jun 08 2020
    
  • Maple
    seq(coeff(series( (4-3*exp(x))/(5-4*exp(x)), x, n+1)*n!, x, n), n = 0..20); # G. C. Greubel, Jun 08 2020
  • Mathematica
    max = 16; f[x_] := (4-3*E^x) / (5-4*E^x); CoefficientList[ Series[ f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Nov 14 2011, after g.f. *)
  • PARI
    a(n)=n!*if(n<0,0,polcoeff((4-3*exp(x))/(5-4*exp(x))+O(x^(n+1)),n))
    
  • PARI
    {a(n)=if(n==0,1,(1/20)*round(suminf(k=1, k^n * (4/5)^k *1.)))} \\ Paul D. Hanna, Nov 28 2014
    
  • Sage
    [1]+[sum( 4^(j-1)*factorial(j)*stirling_number2(n,j) for j in (1..n)) for n in (1..20)] # G. C. Greubel, Jun 08 2020

Formula

E.g.f.: (4 - 3*exp(x))/(5 - 4*exp(x)).
a(n) is asymptotic to (1/20)*n!/log(5/4)^(n+1). More generally if m>1, the number of m-level labeled linear rooted trees with n leaves is asymptotic to n!/log(m/(m-1))^(n+1)/(m^2-m). - Benoit Cloitre, Jan 30 2003
For m-level trees (m>1), e.g.f. is (m-1-(m-2)*e^x)/(m-(m-1)*e^x) and number of trees is 1/(m*(m-1))*sum(k>=0, (1-1/m)^k*k^n). Here m=5, so a(n)=(1/20)*sum(k>=0, (4/5)^k*k^n) (for n>0). - Benoit Cloitre, Jan 30 2003
Let f(x) = (1+x)*(1+2*x). Let D be the operator g(x) -> d/dx(f(x)*g(x)). Then for n>=1, a(n) = D^(n-1)(1) evaluated at x = 3/2. Compare with the result A000670(n) = D^(n-1)(1) at x = 0. See also A194649. - Peter Bala, Sep 05 2011
E.g.f.: 1 + x/(G(0)-5*x) where G(k)= x + k + 1 - x*(k+1)/G(k+1); (continued fraction Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Jul 11 2012
a(n) = (1/20) * Sum_{k>=1} k^n * (4/5)^k for n>0. - Paul D. Hanna, Nov 28 2014
a(n) = Sum_{k=1..n} Stirling2(n, k) * k! * 4^(k-1). - Paul D. Hanna, Nov 28 2014, after Vladeta Jovovic in A050351
a(n) = 1 + 4 * Sum_{k=1..n-1} binomial(n,k) * a(k). - Ilya Gutkovskiy, Jun 08 2020

A201365 Expansion of e.g.f. exp(x) / (5 - 4*exp(x)).

Original entry on oeis.org

1, 5, 45, 605, 10845, 243005, 6534045, 204972605, 7348546845, 296387331005, 13282361478045, 654762261324605, 35211177242722845, 2051349014835939005, 128701394409842982045, 8651475271312083756605, 620334325261670875138845, 47259638324026516284867005
Offset: 0

Views

Author

Paul D. Hanna, Nov 30 2011

Keywords

Examples

			E.g.f.: E(x) = 1 + 5*x + 45*x^2/2! + 605*x^3/3! + 10845*x^4/4! + 243005*x^5/5! + ...
O.g.f.: A(x) = 1 + 5*x + 45*x^2 + 605*x^3 + 10845*x^4 + 243005*x^5 + ...
where A(x) = 1 + 5*x/(1+x) + 2!*5^2*x^2/((1+x)*(1+2*x)) + 3!*5^3*x^3/((1+x)*(1+2*x)*(1+3*x)) + 4!*5^4*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!(Laplace( 1/(5*Exp(-x) -4) ))); // G. C. Greubel, Jun 08 2020
    
  • Maple
    seq(coeff(series(1/(5*exp(-x) - 4), x, n+1)*n!, x, n), n = 0..20); # G. C. Greubel, Jun 08 2020
  • Mathematica
    Table[Sum[(-1)^(n-k)*5^k*StirlingS2[n,k]*k!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 13 2013 *)
    With[{nn=20},CoefficientList[Series[Exp[x]/(5-4Exp[x]),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jul 09 2015 *)
    a[n_]:= If[n<0, 0, PolyLog[ -n, 4/5]/4]; (* Michael Somos, Apr 27 2019 *)
  • PARI
    {a(n)=n!*polcoeff(exp(x+x*O(x^n))/(5 - 4*exp(x+x*O(x^n))), n)}
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n, 5^m*m!*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
    
  • PARI
    {a(n)=sum(k=0, n, (-1)^(n-k)*5^k*stirling(n, k, 2)*k!)}
    
  • Sage
    [sum( (-1)^(n-j)*5^j*factorial(j)*stirling_number2(n,j) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Jun 08 2020

Formula

O.g.f.: A(x) = Sum_{n>=0} n! * 5^n*x^n / Product_{k=0..n} (1+k*x).
O.g.f.: A(x) = 1/(1 - 5*x/(1-4*x/(1 - 10*x/(1-8*x/(1 - 15*x/(1-12*x/(1 - 20*x/(1-16*x/(1 - 25*x/(1-20*x/(1 - ...))))))))))), a continued fraction.
a(n) = Sum_{k=0..n} (-1)^(n-k) * 5^k * Stirling2(n,k) * k!.
a(n) = Sum_{k=0..n} A123125(n,k)*5^k*4^(n-k). - Philippe Deléham, Nov 30 2011
a(n) ~ n! / (4*(log(5/4))^(n+1)) . - Vaclav Kotesovec, Jun 13 2013
a(n) = log(5/4) * Integral_{x = 0..oo} (ceiling(x))^n * (5/4)^(-x) dx. - Peter Bala, Feb 14 2015
a(n) = (1/4) Sum_{k>=1} (4/5)^k * n^k. - Michael Somos, Apr 27 2019
a(n) = 1 + 4 * Sum_{k=0..n-1} binomial(n,k) * a(k). - Ilya Gutkovskiy, Jun 08 2020
From Seiichi Manyama, Nov 15 2023: (Start)
a(0) = 1; a(n) = -5*Sum_{k=1..n} (-1)^k * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 5*a(n-1) + 4*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k). (End)
a(n) = (5/4)*A094417(n) - (1/4)*0^n. - Seiichi Manyama, Dec 21 2023

A354242 Expansion of e.g.f. 1/sqrt(5 - 4 * exp(x)).

Original entry on oeis.org

1, 2, 14, 158, 2486, 50222, 1239254, 36126638, 1214933846, 46299580142, 1971815255894, 92809525295918, 4784166929982806, 268050260650705262, 16219498558371118934, 1054102762745609325998, 73229184033780135425366, 5415407651703010175897582
Offset: 0

Views

Author

Seiichi Manyama, May 20 2022

Keywords

Comments

From Peter Bala, Jul 07 2022: (Start)
Conjecture: Let k be a positive integer. The sequence obtained by reducing a(n) modulo k is eventually periodic with the period dividing phi(k) = A000010(k). For example, modulo 16 we obtain the sequence [1, 2, 14, 14, 6, 14, 6, 14, 6, ...], with an apparent period of 2 beginning at a(3). Cf. A354253.
More generally, we conjecture that the same property holds for integer sequences having an e.g.f. of the form G(exp(x) - 1), where G(x) is an integral power series. (End)

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(5-4*exp(x))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, binomial(2*k, k)*(exp(x)-1)^k)))
    
  • PARI
    a(n) = sum(k=0, n, (2*k)!*stirling(n, k, 2)/k!);

Formula

E.g.f.: Sum_{k>=0} binomial(2*k,k) * (exp(x) - 1)^k.
a(n) = Sum_{k=0..n} (2*k)! * Stirling2(n,k)/k!.
a(n) ~ sqrt(2/5) * n^n / (exp(n) * log(5/4)^(n + 1/2)). - Vaclav Kotesovec, Jun 04 2022
Conjectural o.g.f. as a continued fraction of Stieltjes type: 1/(1 - 2*x/(1 - 5*x/(1 - 6*x/(1 - 10*x/(1 - 10*x/(1 - 15*x/(1 - ... - (4*n-2)*x/(1 - 5*n*x/(1 - ...))))))))). - Peter Bala, Jul 07 2022
a(0) = 1; a(n) = Sum_{k=1..n} (4 - 2*k/n) * binomial(n,k) * a(n-k). - Seiichi Manyama, Sep 09 2023
a(0) = 1; a(n) = 2*a(n-1) - 5*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023

A255927 a(n) = (3/4) * Sum_{k>=0} (3*k)^n/4^k.

Original entry on oeis.org

1, 1, 5, 33, 285, 3081, 40005, 606033, 10491885, 204343641, 4422082005, 105265315233, 2733583519485, 76902684021801, 2329889536156005, 75629701786875633, 2618654297178083085, 96336948993312237561, 3752590641305604502005, 154294551397830418471233, 6677999524135208461382685
Offset: 0

Views

Author

Karol A. Penson, Sep 03 2015

Keywords

Examples

			a(5) = 729*hypergeom([2,2,2,2,2],[1,1,1,1],1/4)/16 = 3081.
		

Crossrefs

Programs

  • Maple
    S:= series(3/(4-exp(3*x)), x, 51):
    seq(coeff(S,x,n)*n!, n=0..50); # Robert Israel, Sep 03 2015
    seq(add(combinat:-eulerian1(n,k)*4^k, k=0..n), n=0..20); # Peter Luschny, Jun 27 2019
  • Mathematica
    a[n_] := 3^(n+1)/4 HurwitzLerchPhi[1/4, -n, 0];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Sep 18 2018 *)
    Eulerian1[0, 0] = 1; Eulerian1[n_, k_] := Sum[(-1)^j (k-j+1)^n Binomial[n+1, j], {j, 0, k+1}]; Table[Sum[Eulerian1[n, k] 4^k, {k, 0, n}], {n, 0, 20}] (* Jean-François Alcover, Jul 13 2019, after Peter Luschny *)
  • PARI
    a(n) = sum(k=0, n, stirling(n,k,2)*k!*3^(n-k)); \\ Michel Marcus, Sep 03 2015

Formula

a(n) = Sum_{k>=0} Stirling2(n,k)*k!*3^(n-k).
E.g.f.: 3/(4-exp(3*x)).
Special values of the generalized hypergeometric function n_F_(n-1):
a(n) = (3^(n+1)/16) * hypergeom([2,2,..2],[1,1,..1],1/4), where the sequence in the first square bracket ("upper" parameters) has n elements all equal to 2 whereas the sequence in the second square bracket ("lower" parameters) has n-1 elements all equal to 1.
Example: a(5) = 729 * hypergeom([2,2,2,2,2],[1,1,1,1],1/4)/16 = 3081.
a(n) is the n-th moment of the discrete weight function W(x) = (3/4)*sum(k>=0, Dirac(x-3*k)/4^k), n>=1.
a(n) ~ n! * 3^(n+1) / ((log(2))^(n+1) * 2^(n+3)). - Vaclav Kotesovec, Jul 09 2018
G.f.: Sum_{j>=0} j!*x^j / Product_{k=1..j} (1 - 3*k*x). - Ilya Gutkovskiy, Apr 04 2019
a(n) = A_{4}(n) where A_{n}(x) are the Eulerian polynomials as defined in A326323. - Peter Luschny, Jun 27 2019

Extensions

a(0)=1 prepended by Alois P. Heinz, Sep 18 2018

A090356 G.f. A(x) satisfies A(x)^5 = BINOMIAL(A(x)^4); that is, the binomial transform of the coefficients in A(x)^4 yields the coefficients in A(x)^5.

Original entry on oeis.org

1, 1, 5, 45, 595, 10475, 231255, 6148495, 191276600, 6815243040, 273601200136, 12217471594856, 600580173151560, 32224787998758280, 1873909224391774760, 117388347849375956328, 7880739469498103077588, 564440024187816634143380
Offset: 0

Views

Author

Paul D. Hanna, Nov 26 2003

Keywords

Comments

In general, if A^n = BINOMIAL(A^(n-1)), then for all integer m>0 there exists an integer sequence B such that B^d = BINOMIAL(A^m) where d=gcd(m+1,n). Also, coefficients of A(k*x)^n = k-th binomial transform of coefficients in A(k*x)^(n-1) for all k>0.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 45*x^3 + 595*x^4 + 10475*x^5 + 231255*x^6 + ...
The coefficients in A(x)^4 are given by A090357 and begin
A(x)^4: [1, 4, 26, 244, 3131, 52600, 1111940, ..., A090357(n), ...].
The binomial transform of A090357 yields the coefficients of A(x)^5:
A(x)^5: [1, 5, 35, 335, 4280, 70976, 1479800, ...]
as shown by
1 = 1*1,
5 = 1*1 + 1*4,
35 = 1*1 + 2*4 + 1*26,
335 = 1*1 + 3*4 + 3*26 + 1*244,
4280 = 1*1 + 4*4 + 6*26 + 4*244 + 1*3131, ...
		

Crossrefs

Programs

  • Magma
    m:=40;
    f:= func< n,x | Exp((&+[(&+[4^(j-1)*Factorial(j)* StirlingSecond(k,j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >;
    R:=PowerSeriesRing(Rationals(), m+1); // A090356
    Coefficients(R!( f(m,x) )); // G. C. Greubel, Jun 09 2023
    
  • Mathematica
    nmax = 17; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^5 - A[x/(1 - x)]^4/(1 - x) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
    With[{m = 40}, CoefficientList[Series[Exp[Sum[Sum[4^(j-1)*j!* StirlingS2[k,j], {j,k}]*x^k/k, {k,m+1}]], {x,0,m}], x]] (* G. C. Greubel, Jun 09 2023 *)
  • PARI
    {a(n)=local(A); if(n<1,0,A=1+x+x*O(x^n); for(k=1,n,B=subst(A^4,x,x/(1-x))/(1-x)+x*O(x^n); A=A-A^5+B);polcoeff(A,n,x))}
    
  • SageMath
    m=40
    def f(n, x): return exp(sum(sum(4^(j-1)*factorial(j)* stirling_number2(k,j)*x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
    def A090356_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(m,x) ).list()
    A090356_list(m) # G. C. Greubel, Jun 09 2023

Formula

G.f. satisfies: A(x)^5 = A(x/(1-x))^4/(1-x).
a(n) ~ (n-1)! / (20 * (log(5/4))^(n+1)). - Vaclav Kotesovec, Nov 19 2014
O.g.f.: A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ), where b(n) = Sum_{k = 1..n} k!*Stirling2(n,k)*4^(k-1) = A050353(n) = 1/4*A094417(n) for n >= 1. - Peter Bala, May 26 2015
G.f.: Product_{k>=1} 1/(1 - k*x)^((1/20) * (4/5)^k). - Seiichi Manyama, May 26 2025

A278075 Coefficients of the signed Fubini polynomials in ascending order, F_n(x) = Sum_{k=0..n} (-1)^n*Stirling2(n,k)*k!*(-x)^k.

Original entry on oeis.org

1, 0, 1, 0, -1, 2, 0, 1, -6, 6, 0, -1, 14, -36, 24, 0, 1, -30, 150, -240, 120, 0, -1, 62, -540, 1560, -1800, 720, 0, 1, -126, 1806, -8400, 16800, -15120, 5040, 0, -1, 254, -5796, 40824, -126000, 191520, -141120, 40320, 0, 1, -510, 18150, -186480, 834120, -1905120, 2328480, -1451520, 362880
Offset: 0

Views

Author

Peter Luschny, Jan 09 2017

Keywords

Comments

Signed version of A131689.
Integral_{x=0..1} F_n(x) = B_n(1) where B_n(x) are the Bernoulli polynomials.

Examples

			Triangle of coefficients starts:
[1]
[0,  1]
[0, -1,    2]
[0,  1,   -6,    6]
[0, -1,   14,  -36,    24]
[0,  1,  -30,  150,  -240,   120]
[0, -1,   62, -540,  1560, -1800,    720]
[0,  1, -126, 1806, -8400, 16800, -15120, 5040]
		

Crossrefs

Row sums are A000012, diagonal is A000142.
Cf. A131689 (unsigned), A019538 (n>0, k>0), A090582.
Let F(n, x) = Sum_{k=0..n} T(n,k)*x^k then, apart from possible differences in the sign or the offset, we have: F(n, -5) = A094418(n), F(n, -4) = A094417(n), F(n, -3) = A032033(n), F(n, -2) = A004123(n), F(n, -1) = A000670(n), F(n, 0) = A000007(n), F(n, 1) = A000012(n), F(n, 2) = A000629(n), F(n, 3) = A201339(n), F(n, 4) = A201354(n), F(n, 5) = A201365(n).

Programs

  • Julia
    function T(n, k)
        if k < 0 || k > n return 0 end
        if n == 0 && k == 0 return 1 end
        k*(T(n-1, k-1) - T(n-1, k))
    end
    for n in 0:7
        println([T(n,k) for k in 0:n])
    end
    # Peter Luschny, Mar 26 2020
  • Maple
    F := (n,x) -> add((-1)^n*Stirling2(n,k)*k!*(-x)^k, k=0..n):
    for n from 0 to 10 do PolynomialTools:-CoefficientList(F(n,x), x) od;
  • Mathematica
    T[ n_, k_] := If[ n < 0 || k < 0, 0, (-1)^(n - k) k! StirlingS2[n, k]]; (* Michael Somos, Jul 08 2018 *)
  • PARI
    {T(n, k) = if( n<0, 0, sum(i=0, k, (-1)^(n + i) * binomial(k, i) * i^n))};
    /* Michael Somos, Jul 08 2018 */
    

Formula

T(n, k) = (-1)^(n-k) * Stirling2(n, k) * k!.
E.g.f.: 1/(1-x*(1-exp(-t))) = Sum_{n>=0} F_n(x) t^n/n!.
T(n, k) = k*(T(n-1, k-1) - T(n-1, k)) for 0 <= k <= n, T(0, 0) = 1, otherwise 0.
Bernoulli numbers are given by B(n) = Sum_{k = 0..n} T(n, k) / (k+1) with B(1) = 1/2. - Michael Somos, Jul 08 2018
Let F_n(x) be the row polynomials of this sequence and W_n(x) the row polynomials of A163626. Then F_n(1 - x) = W_n(x) and Integral_{x=0..1} U(n, x) = Bernoulli(n, 1) for U in {W, F}. - Peter Luschny, Aug 10 2021
T(n, k) = [z^k] Sum_{k=0..n} Eulerian(n, k)*z^(k+1)*(z-1)^(n-k-1) for n >= 1, where Eulerian(n, k) = A173018(n, k). - Peter Luschny, Aug 15 2022
Showing 1-10 of 27 results. Next