cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A094417 Generalized ordered Bell numbers Bo(4,n).

Original entry on oeis.org

1, 4, 36, 484, 8676, 194404, 5227236, 163978084, 5878837476, 237109864804, 10625889182436, 523809809059684, 28168941794178276, 1641079211868751204, 102961115527874385636, 6921180217049667005284, 496267460209336700111076, 37807710659221213027893604
Offset: 0

Views

Author

Ralf Stephan, May 02 2004

Keywords

Comments

Fourth row of array A094416, which has more information.

Crossrefs

Programs

  • Magma
    m:=20; R:=LaurentSeriesRing(RationalField(), m); b:=Coefficients(R!(1/(5 - 4*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // Bruno Berselli, Mar 17 2014
    
  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, 4* add(binomial(n, k) *a(k), k=0..n-1))
        end:
    seq(a(n), n=0..20);
  • Mathematica
    max = 16; f[x_] := 1/(5-4*E^x); CoefficientList[Series[f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Nov 14 2011, after g.f. *)
  • PARI
    my(N=25,x='x+O('x^N)); Vec(serlaplace(1/(5 - 4*exp(x)))) \\ Joerg Arndt, Jan 15 2024
  • SageMath
    def A094416(n,k): return sum(factorial(j)*n^j*stirling_number2(k,j) for j in range(k+1)) # array
    def A094417(k): return A094416(4,k)
    [A094417(n) for n in range(31)] # G. C. Greubel, Jan 12 2024
    

Formula

E.g.f.: 1/(5 - 4*exp(x)).
a(n) = 4 * A050353(n) for n>0.
a(n) = Sum_{k=0..n} A131689(n,k) * 4^k. - Philippe Deléham, Nov 03 2008
E.g.f.: A(x) with A_n = 4 * Sum_{k=0..n-1} C(n,k) * A_k; A_0 = 1. - Vladimir Kruchinin, Jan 27 2011
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - 8*x*(k+1)/(8*x*(k+1) - 1 + 10*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
a(n) = log(5/4)*int {x = 0..inf} (floor(x))^n * (5/4)^(-x) dx. - Peter Bala, Feb 14 2015
a(0) = 1; a(n) = 4 * a(n-1) - 5 * Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023
From Seiichi Manyama, Jun 01 2025: (Start)
a(n) = (-1)^(n+1)/5 * Li_{-n}(5/4), where Li_{n}(x) is the polylogarithm function.
a(n) = (1/5) * Sum_{k>=0} k^n * (4/5)^k.
a(n) = (4/5) * Sum_{k=0..n} 5^k * (-1)^(n-k) * A131689(n,k) for n > 0. (End)

A201365 Expansion of e.g.f. exp(x) / (5 - 4*exp(x)).

Original entry on oeis.org

1, 5, 45, 605, 10845, 243005, 6534045, 204972605, 7348546845, 296387331005, 13282361478045, 654762261324605, 35211177242722845, 2051349014835939005, 128701394409842982045, 8651475271312083756605, 620334325261670875138845, 47259638324026516284867005
Offset: 0

Views

Author

Paul D. Hanna, Nov 30 2011

Keywords

Examples

			E.g.f.: E(x) = 1 + 5*x + 45*x^2/2! + 605*x^3/3! + 10845*x^4/4! + 243005*x^5/5! + ...
O.g.f.: A(x) = 1 + 5*x + 45*x^2 + 605*x^3 + 10845*x^4 + 243005*x^5 + ...
where A(x) = 1 + 5*x/(1+x) + 2!*5^2*x^2/((1+x)*(1+2*x)) + 3!*5^3*x^3/((1+x)*(1+2*x)*(1+3*x)) + 4!*5^4*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!(Laplace( 1/(5*Exp(-x) -4) ))); // G. C. Greubel, Jun 08 2020
    
  • Maple
    seq(coeff(series(1/(5*exp(-x) - 4), x, n+1)*n!, x, n), n = 0..20); # G. C. Greubel, Jun 08 2020
  • Mathematica
    Table[Sum[(-1)^(n-k)*5^k*StirlingS2[n,k]*k!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 13 2013 *)
    With[{nn=20},CoefficientList[Series[Exp[x]/(5-4Exp[x]),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jul 09 2015 *)
    a[n_]:= If[n<0, 0, PolyLog[ -n, 4/5]/4]; (* Michael Somos, Apr 27 2019 *)
  • PARI
    {a(n)=n!*polcoeff(exp(x+x*O(x^n))/(5 - 4*exp(x+x*O(x^n))), n)}
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n, 5^m*m!*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
    
  • PARI
    {a(n)=sum(k=0, n, (-1)^(n-k)*5^k*stirling(n, k, 2)*k!)}
    
  • Sage
    [sum( (-1)^(n-j)*5^j*factorial(j)*stirling_number2(n,j) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Jun 08 2020

Formula

O.g.f.: A(x) = Sum_{n>=0} n! * 5^n*x^n / Product_{k=0..n} (1+k*x).
O.g.f.: A(x) = 1/(1 - 5*x/(1-4*x/(1 - 10*x/(1-8*x/(1 - 15*x/(1-12*x/(1 - 20*x/(1-16*x/(1 - 25*x/(1-20*x/(1 - ...))))))))))), a continued fraction.
a(n) = Sum_{k=0..n} (-1)^(n-k) * 5^k * Stirling2(n,k) * k!.
a(n) = Sum_{k=0..n} A123125(n,k)*5^k*4^(n-k). - Philippe Deléham, Nov 30 2011
a(n) ~ n! / (4*(log(5/4))^(n+1)) . - Vaclav Kotesovec, Jun 13 2013
a(n) = log(5/4) * Integral_{x = 0..oo} (ceiling(x))^n * (5/4)^(-x) dx. - Peter Bala, Feb 14 2015
a(n) = (1/4) Sum_{k>=1} (4/5)^k * n^k. - Michael Somos, Apr 27 2019
a(n) = 1 + 4 * Sum_{k=0..n-1} binomial(n,k) * a(k). - Ilya Gutkovskiy, Jun 08 2020
From Seiichi Manyama, Nov 15 2023: (Start)
a(0) = 1; a(n) = -5*Sum_{k=1..n} (-1)^k * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 5*a(n-1) + 4*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k). (End)
a(n) = (5/4)*A094417(n) - (1/4)*0^n. - Seiichi Manyama, Dec 21 2023

A050354 Number of ordered factorizations of n with one level of parentheses.

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 1, 9, 3, 5, 1, 21, 1, 5, 5, 27, 1, 21, 1, 21, 5, 5, 1, 81, 3, 5, 9, 21, 1, 37, 1, 81, 5, 5, 5, 111, 1, 5, 5, 81, 1, 37, 1, 21, 21, 5, 1, 297, 3, 21, 5, 21, 1, 81, 5, 81, 5, 5, 1, 201, 1, 5, 21, 243, 5, 37, 1, 21, 5, 37, 1, 513, 1, 5, 21, 21, 5, 37, 1, 297, 27, 5, 1, 201
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
Dirichlet inverse of (A074206*A153881). - Mats Granvik, Jan 12 2009

Examples

			For n=6, we have (6) = (3*2) = (2*3) = (3)*(2) = (2)*(3), thus a(6) = 5.
		

Crossrefs

Programs

  • Mathematica
    A[n_]:=If[n==1, n/2, 2*Sum[If[dIndranil Ghosh, May 19 2017 *)
  • PARI
    A050354aux(n) = if(1==n,n/2, 2*sumdiv(n,d, if(dA050354aux(d), 0)));
    A050354(n) = if(1==n,n,A050354aux(n)); \\ Antti Karttunen, May 19 2017, after Jovovic's general recurrence.
    
  • Sage
    def A(n): return 1/2 if n==1 else 2*sum(A(d) for d in divisors(n) if dIndranil Ghosh, May 19 2017, after Antti Karttunen's PARI program

Formula

Dirichlet g.f.: (2-zeta(s))/(3-2*zeta(s)).
Recurrence for number of ordered factorizations of n with k-1 levels of parentheses is a(n) = k*Sum_{d|n, d1, a(1)= 1/k. - Vladeta Jovovic, May 25 2005
a(p^k) = 3^(k-1).
a(A002110(n)) = A050351(n).
Sum_{k=1..n} a(k) ~ -n^r / (4*r*Zeta'(r)), where r = 2.185285451787482231198145140899733642292971552057774261555354324536... is the root of the equation Zeta(r) = 3/2. - Vaclav Kotesovec, Feb 02 2019

Extensions

Duplicate comment removed by R. J. Mathar, Jul 15 2010

A090356 G.f. A(x) satisfies A(x)^5 = BINOMIAL(A(x)^4); that is, the binomial transform of the coefficients in A(x)^4 yields the coefficients in A(x)^5.

Original entry on oeis.org

1, 1, 5, 45, 595, 10475, 231255, 6148495, 191276600, 6815243040, 273601200136, 12217471594856, 600580173151560, 32224787998758280, 1873909224391774760, 117388347849375956328, 7880739469498103077588, 564440024187816634143380
Offset: 0

Views

Author

Paul D. Hanna, Nov 26 2003

Keywords

Comments

In general, if A^n = BINOMIAL(A^(n-1)), then for all integer m>0 there exists an integer sequence B such that B^d = BINOMIAL(A^m) where d=gcd(m+1,n). Also, coefficients of A(k*x)^n = k-th binomial transform of coefficients in A(k*x)^(n-1) for all k>0.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 45*x^3 + 595*x^4 + 10475*x^5 + 231255*x^6 + ...
The coefficients in A(x)^4 are given by A090357 and begin
A(x)^4: [1, 4, 26, 244, 3131, 52600, 1111940, ..., A090357(n), ...].
The binomial transform of A090357 yields the coefficients of A(x)^5:
A(x)^5: [1, 5, 35, 335, 4280, 70976, 1479800, ...]
as shown by
1 = 1*1,
5 = 1*1 + 1*4,
35 = 1*1 + 2*4 + 1*26,
335 = 1*1 + 3*4 + 3*26 + 1*244,
4280 = 1*1 + 4*4 + 6*26 + 4*244 + 1*3131, ...
		

Crossrefs

Programs

  • Magma
    m:=40;
    f:= func< n,x | Exp((&+[(&+[4^(j-1)*Factorial(j)* StirlingSecond(k,j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >;
    R:=PowerSeriesRing(Rationals(), m+1); // A090356
    Coefficients(R!( f(m,x) )); // G. C. Greubel, Jun 09 2023
    
  • Mathematica
    nmax = 17; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^5 - A[x/(1 - x)]^4/(1 - x) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
    With[{m = 40}, CoefficientList[Series[Exp[Sum[Sum[4^(j-1)*j!* StirlingS2[k,j], {j,k}]*x^k/k, {k,m+1}]], {x,0,m}], x]] (* G. C. Greubel, Jun 09 2023 *)
  • PARI
    {a(n)=local(A); if(n<1,0,A=1+x+x*O(x^n); for(k=1,n,B=subst(A^4,x,x/(1-x))/(1-x)+x*O(x^n); A=A-A^5+B);polcoeff(A,n,x))}
    
  • SageMath
    m=40
    def f(n, x): return exp(sum(sum(4^(j-1)*factorial(j)* stirling_number2(k,j)*x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
    def A090356_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(m,x) ).list()
    A090356_list(m) # G. C. Greubel, Jun 09 2023

Formula

G.f. satisfies: A(x)^5 = A(x/(1-x))^4/(1-x).
a(n) ~ (n-1)! / (20 * (log(5/4))^(n+1)). - Vaclav Kotesovec, Nov 19 2014
O.g.f.: A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ), where b(n) = Sum_{k = 1..n} k!*Stirling2(n,k)*4^(k-1) = A050353(n) = 1/4*A094417(n) for n >= 1. - Peter Bala, May 26 2015
G.f.: Product_{k>=1} 1/(1 - k*x)^((1/20) * (4/5)^k). - Seiichi Manyama, May 26 2025

A090357 G.f. satisfies A^5 = BINOMIAL(A)^4; also equals A090356^4.

Original entry on oeis.org

1, 4, 26, 244, 3131, 52600, 1111940, 28559320, 865622825, 30250881420, 1196941704454, 52860066623036, 2576115583371739, 137274420821505776, 7937914900025008984, 494941882189888642832, 33096552232229291234923
Offset: 0

Views

Author

Paul D. Hanna, Nov 26 2003

Keywords

Comments

See comments in A090356.

Crossrefs

Programs

  • Mathematica
    nmax = 16; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^5 - A[x/(1 - x)]^4/(1 - x)^4 + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
  • PARI
    {a(n)=local(A); if(n<1,0,A=1+x+x*O(x^n); for(k=1,n,B=subst(A,x,x/(1-x))/(1-x)+x*O(x^n); A=A-A^5+B^4);polcoeff(A,n,x))}

Formula

G.f.: A(x)^5 = A(x/(1-x))^4/(1-x)^4.
From Peter Bala, May 26 2015: (Start)
O.g.f.: A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ), where b(n) = Sum_{k = 1..n} k!*Stirling2(n,k)*4^k = A094417(n) = 4*A050353(n) for n >= 1.
BINOMIAL(A(x)) = exp( Sum_{n >= 1} c(n)*x^n/n ) where c(n) = (-1)^n*Sum_{k = 1..n} k!*Stirling2(n,k)*(-5)^k = A201365(n) = 5*A050353(n) for n >= 1.
A(x) = B(x)^4 and BINOMIAL(A(x)) = B(x)^5 where B(x) = 1 + x + 5*x^2 + 45*x^3 + 495*x^4 + ... is the o.g.f. for A090356. See also A019538. (End)
G.f.: Product_{k>=1} 1/(1 - k*x)^((1/5) * (4/5)^k). - Seiichi Manyama, May 26 2025
a(n) ~ (n-1)! / (5 * log(5/4)^(n+1)). - Vaclav Kotesovec, May 28 2025

A257565 Generalized Fubini numbers. Square array read by ascending antidiagonals, A(n,k) = 1 + k*(Sum_{j=1..n-1} C(n,j)*A(j,k)); n>=0 and k>=0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 13, 5, 1, 1, 1, 75, 37, 7, 1, 1, 1, 541, 365, 73, 9, 1, 1, 1, 4683, 4501, 1015, 121, 11, 1, 1, 1, 47293, 66605, 17641, 2169, 181, 13, 1, 1, 1, 545835, 1149877, 367927, 48601, 3971, 253, 15, 1, 1, 1, 7087261, 22687565, 8952553, 1306809, 108901, 6565, 337, 17, 1, 1
Offset: 0

Views

Author

Peter Luschny, May 08 2015

Keywords

Comments

M. Mureşan defined the generalized Fubini numbers as the enumerators of the k-labeled ordered p partitions of an n-set.

Examples

			      1,       1,       1,       1,        1,         1, ...  A000012
      1,       1,       1,       1,        1,         1, ...  A000012
      1,       3,       5,       7,        9,        11, ...  A005408
      1,      13,      37,      73,      121,       181, ...  A003154
      1,      75,     365,    1015,     2169,      3971, ...  A193252
      1,     541,    4501,   17641,    48601,    108901, ...
      1,    4683,   66605,  367927,  1306809,   3583811, ...
      1,   47293, 1149877, 8952553, 40994521, 137595781, ...
A000012, A000670, A050351, A050352,  A050353,
		

References

  • M. Mureşan, On the generalized Fubini numbers. (Romanian) Stud. Cercet. Mat. 37, 70-76 (1985).

Crossrefs

Programs

  • Maple
    F := proc(n,k) option remember; 1+k*add(binomial(n,j)*F(j,k),j=1..n-1) end:
    seq(print(seq(F(n-k,k),k=0..n)), n=0..7); # triangular form
    egf := k -> 1+1/(1/(exp(z)-1)-k): # egf of column k
    for k from 0 to 4 do seq(j!*coeff(series(egf(k),z,10),z,j),j=0..8) od;
    A := (n,k) -> `if`(n=0,1,add(k^(n-j-1)*(k+1)^j*combinat:-eulerian1(n,j),j=0..n-1)): seq(print(seq(A(n,k),k=0..5)),n=0..7);
  • Mathematica
    A[n_, k_] := A[n, k] = 1 + k Sum[Binomial[n, j] A[j, k], {j, 1, n - 1}]; Table[A[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 30 2016 *)

Formula

E.g.f. of column k: 1+1/(1/(exp(z)-1)-k).
A(n,k) = Sum_{j=0..n-1} k^j*j!*{n,j+1} for n>0, else 1; {n,j} denotes the Stirling subset numbers.
A(n,k) = Sum_{j=0..n-1} k^(n-j-1)*(k+1)^j* for n>0, else 1; denotes the Eulerian numbers.

A250915 E.g.f.: (32 - 31*cosh(x)) / (41 - 40*cosh(x)).

Original entry on oeis.org

1, 9, 2169, 1306809, 1469709369, 2656472295609, 7042235448544569, 25740278881968596409, 124066865052334175027769, 762445058190042799428289209, 5818666543923901596429593478969, 53987940899344324456042542132654009, 598504142090716188282023260396781018169
Offset: 0

Views

Author

Paul D. Hanna, Nov 28 2014

Keywords

Comments

The number of 5-level labeled linear rooted trees with 2*n leaves.
A bisection of A050353.
a(n) == 9 (mod 2160) for n>0.

Examples

			E.g.f.: E(x) = 1 + 9*x^2/2! + 2169*x^4/4! + 1306809*x^6/6! + 1469709369*x^8/8! +...
where E(x) = (32 - 31*cosh(x)) / (41 - 40*cosh(x)).
ALTERNATE GENERATING FUNCTION.
E.g.f.: A(x) = 1 + 9*x + 2169*x^2/2! + 1306809*x^3/3! + 1469709369*x^4/4! +...
where
20*A(x) = 16 + exp(x)*(4/5) + exp(4*x)*(4/5)^2 + exp(9*x)*(4/5)^3 + exp(16*x)*(4/5)^4 + exp(25*x)*(4/5)^5 + exp(36*x)*(4/5)^6 +...
		

Crossrefs

Programs

  • Mathematica
    nmax=20; Table[(CoefficientList[Series[(32-31*Cosh[x]) / (41-40*Cosh[x]), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[n]],{n,1,2*nmax+2,2}] (* Vaclav Kotesovec, Nov 29 2014 *)
  • PARI
    /* E.g.f.: (32 - 31*cosh(x)) / (41 - 40*cosh(x)): */
    {a(n) = local(X=x+O(x^(2*n+1))); (2*n)!*polcoeff( (32 - 31*cosh(X)) / (41 - 40*cosh(X)) , 2*n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* Formula for a(n): */
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = if(n==0, 1, sum(k=0, 2*n, 4^(k-1) * k! * Stirling2(2*n, k) ))}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* As the Sum of an Infinite Series: */
    \p100 \\ set precision
    Vec(serlaplace(3/4 + 1/20*sum(n=0,3000,exp(n^2*x)*(4/5)^n*1.)))

Formula

E.g.f.: 3/4 + (1/20)*Sum_{n>=0} exp(n^2*x) * (4/5)^n = Sum_{n>=0} a(n)*x^n/n!.
a(n) = Sum_{k=0..2*n} 4^(k-1) * k! * Stirling2(2*n, k) for n>0 with a(0)=1.
a(n) ~ (2*n)! / (20 * (log(5/4))^(2*n+1)). - Vaclav Kotesovec, Nov 29 2014

A321189 a(n) = n! * [x^n] 1 - 1/(n - 1/(exp(x) - 1)).

Original entry on oeis.org

1, 1, 5, 73, 2169, 108901, 8288293, 890380177, 128364028145, 23918924529901, 5595490598128221, 1605718043992482553, 554663179293965398825, 227038711419826844827381, 108674023653792712066606229, 60142879347501714200454327841, 38108071228342727619600464659425
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 29 2018

Keywords

Crossrefs

Main diagonal of A257565.

Programs

  • GAP
    Concatenation([1],List([1..16],n->Sum([1..n],k->Stirling2(n,k)*Factorial(k)*n^(k-1)))); # Muniru A Asiru, Oct 29 2018
    
  • Maple
    seq(coeff(series(factorial(n)*(1-1/(n-1/(exp(x)-1))),x,n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Oct 29 2018
    # Or, using the recurrence of the Fubini polynomials:
    F := proc(n) option remember; if n = 0 then return 1 fi;
    expand(add(binomial(n, k)*F(n-k)*x, k = 1..n)) end:
    a := n -> `if`(n=0, 1, subs(x = n, F(n)) / n):
    seq(a(n), n = 0..16);  # Peter Luschny, May 21 2021
  • Mathematica
    Table[n! SeriesCoefficient[1 - 1/(n - 1/(Exp[x] - 1)), {x, 0, n}], {n, 0, 16}]
    Join[{1}, Table[Sum[StirlingS2[n, k] k! n^(k - 1), {k, n}], {n, 16}]]
  • PARI
    {a(n) = if(n==0, 1, sum(k=0, n, k!*n^(k-1)*stirling(n, k, 2)))} \\ Seiichi Manyama, Jun 12 2020

Formula

a(0) = 1; a(n) = Sum_{k=1..n} Stirling2(n, k)*k!*n^(k-1).
a(n) = A257565(n, n).
From Vaclav Kotesovec, Oct 29 2018: (Start)
a(n) ~ exp(1/2) * n! * n^(n-1).
a(n) ~ sqrt(2*Pi) * n^(2*n - 1/2) / exp(n - 1/2). (End)
a(n) = F_{n}(n) / n for n >= 1, where F_{n}(x) is the Fubini polynomial. In other words: a(n) = A094420(n) / n for n >= 1. - Peter Luschny, May 21 2021

A050356 Number of ordered factorizations of n with 2 levels of parentheses.

Original entry on oeis.org

1, 1, 1, 4, 1, 7, 1, 16, 4, 7, 1, 40, 1, 7, 7, 64, 1, 40, 1, 40, 7, 7, 1, 208, 4, 7, 16, 40, 1, 73, 1, 256, 7, 7, 7, 292, 1, 7, 7, 208, 1, 73, 1, 40, 40, 7, 1, 1024, 4, 40, 7, 40, 1, 208, 7, 208, 7, 7, 1, 544, 1, 7, 40, 1024, 7, 73, 1, 40, 7, 73, 1, 1840, 1, 7, 40, 40, 7, 73, 1
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).

Examples

			For n=6 we have ((6)) = ((3*2)) = ((2*3)) = ((3)*(2)) = ((2)*(3)) = ((3))*((2)) = ((2))*((3)), thus a(6) = 7.
		

Crossrefs

Programs

Formula

Dirichlet g.f.: (3-2*zeta(s))/(4-3*zeta(s)).
a(p^k) = 4^(k-1).
a(A002110(n)) = A050352(n).
Sum_{k=1..n} a(k) ~ -n^r / (9*r*Zeta'(r)), where r = 2.52138975790328306967497455387140053675965539610041801606891036... is the root of the equation Zeta(r) = 4/3. - Vaclav Kotesovec, Feb 02 2019

A050358 Number of ordered factorizations of n with 3 levels of parentheses.

Original entry on oeis.org

1, 1, 1, 5, 1, 9, 1, 25, 5, 9, 1, 65, 1, 9, 9, 125, 1, 65, 1, 65, 9, 9, 1, 425, 5, 9, 25, 65, 1, 121, 1, 625, 9, 9, 9, 605, 1, 9, 9, 425, 1, 121, 1, 65, 65, 9, 1, 2625, 5, 65, 9, 65, 1, 425, 9, 425, 9, 9, 1, 1145, 1, 9, 65, 3125, 9, 121, 1, 65, 9, 121, 1, 4825, 1, 9, 65, 65, 9, 121
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
The Dirichlet inverse is given by A050356, turning all but the first element of A050356 negative. - R. J. Mathar, Jul 15 2010

Examples

			6 = (((6))) = (((3*2))) = (((2*3))) = (((3)*(2))) = (((2)*(3))) = (((3))*((2))) = (((2))*((3))) = (((3)))*(((2))) = (((2)))*(((3))).
		

Crossrefs

Cf. A002033, A050351-A050359. a(p^k)=5^(k-1). a(A002110)=A050353.

Formula

Dirichlet g.f.: (4-3*zeta(s))/(5-4*zeta(s)).
a(n) = A050359(A101296(n)). - R. J. Mathar, May 26 2017
Sum_{k=1..n} a(k) ~ -n^r / (16*r*Zeta'(r)), where r = 2.7884327053324956670606046076818023223650950899573090550836329583345... is the root of the equation Zeta(r) = 5/4. - Vaclav Kotesovec, Feb 02 2019
Showing 1-10 of 13 results. Next