cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A003154 Centered 12-gonal numbers, or centered dodecagonal numbers: numbers of the form 6*k*(k-1) + 1.

Original entry on oeis.org

1, 13, 37, 73, 121, 181, 253, 337, 433, 541, 661, 793, 937, 1093, 1261, 1441, 1633, 1837, 2053, 2281, 2521, 2773, 3037, 3313, 3601, 3901, 4213, 4537, 4873, 5221, 5581, 5953, 6337, 6733, 7141, 7561, 7993, 8437, 8893, 9361, 9841, 10333, 10837, 11353, 11881, 12421
Offset: 1

Views

Author

Keywords

Comments

Binomial transform of [1, 12, 12, 0, 0, 0, ...]. Narayana transform (A001263) of [1, 12, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
Numbers k such that 6*k+3 is a square, these squares are given in A016946. - Gary Detlefs and Vincenzo Librandi, Aug 08 2010
Odd numbers of the form floor(n^2/6). - Juri-Stepan Gerasimov, Jul 27 2011
Bisection of A032528. - Omar E. Pol, Aug 20 2011
Sequence found by reading the line from 1, in the direction 1, 13, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A033581 in the same spiral. - Omar E. Pol, Sep 08 2011
The digital root has period 3 (1, 4, 1) (A146325), the same digital root as the centered triangular numbers A005448(n). - Peter M. Chema, Dec 20 2023

Examples

			From _Omar E. Pol_, Aug 21 2011: (Start)
1. Classic illustration of initial terms of the star numbers:
.
.                                     o
.                                    o o
.                  o            o o o o o o o
.               o o o o          o o o o o o
.     o          o o o            o o o o o
.               o o o o          o o o o o o
.                  o            o o o o o o o
.                                    o o
.                                     o
.
.     1            13                 37
.
2. Alternative illustration of initial terms using n-1 concentric hexagons around a central element:
.
.                                 o o o o o
.                                o         o
.                o o o          o   o o o   o
.               o     o        o   o     o   o
.     o        o   o   o      o   o   o   o   o
.               o     o        o   o     o   o
.                o o o          o   o o o   o
.                                o         o
.                                 o o o o o
(End)
		

References

  • Martin Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 20.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

G.f.: x*(1+10*x+x^2)/(1-x)^3. Simon Plouffe in his 1992 dissertation
a(n) = 1 + Sum_{j=0..n} (12*j). E.g., a(2)=37 because 1 + 12*0 + 12*1 + 12*2 = 37. - Xavier Acloque, Oct 06 2003
a(n) = numerator in B_2(x) = (1/2)x^2 - (1/2)x + 1/12 = Bernoulli polynomial of degree 2. - Gary W. Adamson, May 30 2005
a(n) = 12*(n-1) + a(n-1), with n>1, a(1)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = A049598(n-1) + 1. - Omar E. Pol, Oct 03 2011
Sum_{n>=1} 1/a(n) = A306980 = Pi * tan(Pi/(2*sqrt(3))) / (2*sqrt(3)). - Vaclav Kotesovec, Jul 23 2019
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} a(n)/n! = 7*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 7/e - 1. (End)
a(n) = 2*A003215(n-1) - 1. - Leo Tavares, Jul 30 2021
E.g.f.: exp(x)*(1 + 6*x^2) - 1. - Stefano Spezia, Aug 19 2022

Extensions

More terms from Michael Somos

A321189 a(n) = n! * [x^n] 1 - 1/(n - 1/(exp(x) - 1)).

Original entry on oeis.org

1, 1, 5, 73, 2169, 108901, 8288293, 890380177, 128364028145, 23918924529901, 5595490598128221, 1605718043992482553, 554663179293965398825, 227038711419826844827381, 108674023653792712066606229, 60142879347501714200454327841, 38108071228342727619600464659425
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 29 2018

Keywords

Crossrefs

Main diagonal of A257565.

Programs

  • GAP
    Concatenation([1],List([1..16],n->Sum([1..n],k->Stirling2(n,k)*Factorial(k)*n^(k-1)))); # Muniru A Asiru, Oct 29 2018
    
  • Maple
    seq(coeff(series(factorial(n)*(1-1/(n-1/(exp(x)-1))),x,n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Oct 29 2018
    # Or, using the recurrence of the Fubini polynomials:
    F := proc(n) option remember; if n = 0 then return 1 fi;
    expand(add(binomial(n, k)*F(n-k)*x, k = 1..n)) end:
    a := n -> `if`(n=0, 1, subs(x = n, F(n)) / n):
    seq(a(n), n = 0..16);  # Peter Luschny, May 21 2021
  • Mathematica
    Table[n! SeriesCoefficient[1 - 1/(n - 1/(Exp[x] - 1)), {x, 0, n}], {n, 0, 16}]
    Join[{1}, Table[Sum[StirlingS2[n, k] k! n^(k - 1), {k, n}], {n, 16}]]
  • PARI
    {a(n) = if(n==0, 1, sum(k=0, n, k!*n^(k-1)*stirling(n, k, 2)))} \\ Seiichi Manyama, Jun 12 2020

Formula

a(0) = 1; a(n) = Sum_{k=1..n} Stirling2(n, k)*k!*n^(k-1).
a(n) = A257565(n, n).
From Vaclav Kotesovec, Oct 29 2018: (Start)
a(n) ~ exp(1/2) * n! * n^(n-1).
a(n) ~ sqrt(2*Pi) * n^(2*n - 1/2) / exp(n - 1/2). (End)
a(n) = F_{n}(n) / n for n >= 1, where F_{n}(x) is the Fubini polynomial. In other words: a(n) = A094420(n) / n for n >= 1. - Peter Luschny, May 21 2021

A338875 Array T(n, m) read by ascending antidiagonals: numerators of shifted Fubini numbers F(n, m) where m >= 0.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 13, 5, 1, 1, 75, 2, 5, 1, 1, 541, 191, 29, 29, 1, 1, 4683, 76, 263, 149, 7, 1, 1, 47293, 5081, 4157, 24967, 2687, 727, 1, 1, 545835, 674, 93881, 115567, 44027, 66247, 631, 1, 1, 7087261, 386237, 21209, 377909, 31627, 37728769, 354061, 4481, 1, 1
Offset: 0

Views

Author

Stefano Spezia, Dec 25 2020

Keywords

Examples

			Array T(n, m):
n\m|   0       1       2       3 ...
---+--------------------------------
0  |   1       1       1       1 ...
1  |   1       1       1       1 ...
2  |   3       5       5      29 ...
3  |  13       2      29     149 ...
...
Related table of shifted Fubini numbers F(n, m):
   1   1      1         1 ...
   1 1/2    1/6      1/24 ...
   3 5/6   5/36   29/1440 ...
  13   2 29/180 149/11520 ...
  ...
		

Crossrefs

Cf. A000012 (n = 0 and n = 1), A000670 (m = 0), A226513 (high-order Fubini numbers), A232472, A232473, A232474, A257565, A338873, A338874.
Cf. A338876 (denominators).

Programs

  • Mathematica
    F[n_,m_]:=n!Coefficient[Series[x^m/(x^m-Exp[x]+Sum[x^k/k!,{k,0,m}]),{x,0,n}],x,n]; Table[Numerator[F[n-m,m]],{n,0,9},{m,0,n}]//Flatten
  • PARI
    tm(n, m) = {my(m = matrix(n, n, i, j, if (i==1, if (j==1, 1/(m + 1)!, if (j==2, 1)), if (j==1, (-1)^(i+1)/(m + i)!)))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m; }
    T(n, m) = numerator(n!*matdet(tm(n, m))); \\ Michel Marcus, Dec 31 2020

Formula

T(n, m) = numerator(F(n, m)).
F(n, m) = n!*det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in 1/(m + 1)!, 1, 0, ..., 0 and whose first column consists in 1/(m + 1)!, -1/(m + 2)!, ..., (-1)^(n-1)/(m + n)! (see Proposition 5.1 in Komatsu).
F(n, m) = n!*Sum_{k=0..n-1} F(k, m)/((n - k + m)!*k!) for n > 0 and m >= 0 with F(0, m) = 1 (see Lemma 5.2).
F(n, m) = [x^n] n!*x^m/(x^m - exp(x) + E_m(x)), where E_m(x) = Sum_{n=0..m} x^n/n! (see Theorem 5.3 in Komatsu).
F(n, m) = n!*Sum_{k=1..n} Sum_{i_1+...+i_k=n, i_1,...,i_k>=1} Product_{j=1..k} 1/(i_j + m)! for n > 0 and m >= 0 (see Theorem 5.4).
F(1, m) = 1/(m + 1)! (see Theorem 5.5 in Komatsu).
F(n, m) = n!*Sum_{t_1+2*t_2+...+n*t_n=n} (t_1,...,t_n)!*(-1)^(n-t_1-...-t_n)*Product_{j=1..n} (1/(m + j)!)^t_j for n >= m >= 1 (see Theorem 5.7 in Komatsu).
(-1)^(n-1)/(n + m)! = det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in F(1, m), 1, 0, ..., 0 and whose first column consists in F(1, m), F(2, m)/2!, ..., F(n, m)/n! for n > 0 (see Theorem 5.8 in Komatsu).
Sum_{k=0..n} binomial(n, k)*F(k, m)*F(n-k, m) = - n!/(m^2*m!)*Sum_{l=0..n-1} ((m! + 1)/(m*m!))^(n-l-1)*(l*(m! + 1) - m)/l!*F(l, m) - (n - m)/m*F(n, m) for m > 0 (see Theorem 5.11 in Komatsu).

A338876 Array T(n, m) read by ascending antidiagonals: denominators of shifted Fubini numbers F(n, m) where m >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 1, 36, 24, 1, 1, 30, 180, 1440, 120, 1, 1, 3, 1080, 11520, 2400, 720, 1, 1, 42, 9072, 2419200, 2016000, 1814400, 5040, 1, 1, 1, 90720, 11612160, 60480000, 435456000, 12700800, 40320, 1, 1, 90, 7776, 33177600, 69120000, 548674560000, 21337344000, 812851200, 362880, 1
Offset: 0

Views

Author

Stefano Spezia, Dec 25 2020

Keywords

Examples

			Array T(n, m):
n\m|   0       1       2       3 ...
---+--------------------------------
0  |   1       1       1       1 ...
1  |   1       2       6      24 ...
2  |   1       6      36    1440 ...
3  |   1       1     180   11520 ...
...
Related table of shifted Fubini numbers F(n, m):
   1   1      1         1 ...
   1 1/2    1/6      1/24 ...
   3 5/6   5/36   29/1440 ...
  13   2 29/180 149/11520 ...
  ...
		

Crossrefs

Cf. A000012 (n = 0 or m = 0), A000142, A000670, A226513 (high-order Fubini numbers), A232472, A232473, A232474, A257565, A338873, A338874.
Cf. A338875 (numerators).

Programs

  • Mathematica
    F[n_,m_]:=n!Coefficient[Series[x^m/(x^m-Exp[x]+Sum[x^k/k!,{k,0,m}]),{x,0,n}],x,n]; Table[Denominator[F[n-m,m]],{n,0,9},{m,0,n}]//Flatten
  • PARI
    tm(n, m) = {my(m = matrix(n, n, i, j, if (i==1, if (j==1, 1/(m + 1)!, if (j==2, 1)), if (j==1, (-1)^(i+1)/(m + i)!)))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m; }
    T(n, m) = denominator(n!*matdet(tm(n, m))); \\ Michel Marcus, Dec 31 2020

Formula

T(n, m) = denominator(F(n, m)).
F(n, m) = n!*det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in 1/(m + 1)!, 1, 0, ..., 0 and whose first column consists in 1/(m + 1)!, -1/(m + 2)!, ..., (-1)^(n-1)/(m + n)! (see Proposition 5.1 in Komatsu).
F(n, m) = n!*Sum_{k=0..n-1} F(k, m)/((n - k + m)!*k!) for n > 0 and m >= 0 with F(0, m) = 1 (see Lemma 5.2).
F(n, m) = [x^n] n!*x^m/(x^m - exp(x) + E_m(x)), where E_m(x) = Sum_{n=0..m} x^n/n! (see Theorem 5.3 in Komatsu).
F(n, m) = n!*Sum_{k=1..n} Sum_{i_1+...+i_k=n, i_1,...,i_k>=1} Product_{j=1..k} 1/(i_j + m)! for n > 0 and m >= 0 (see Theorem 5.4).
F(1, m) = 1/(m + 1)! (see Theorem 5.5 in Komatsu).
F(n, m) = n!*Sum_{t_1+2*t_2+...+n*t_n=n} (t_1,...,t_n)!*(-1)^(n-t_1-...-t_n)*Product_{j=1..n} (1/(m + j)!)^t_j for n >= m >= 1 (see Theorem 5.7 in Komatsu).
(-1)^(n-1)/(n + m)! = det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in F(1, m), 1, 0, ..., 0 and whose first column consists in F(1, m), F(2, m)/2!, ..., F(n, m)/n! for n > 0 (see Theorem 5.8 in Komatsu).
Sum_{k=0..n} binomial(n, k)*F(k, m)*F(n-k, m) = - n!/(m^2*m!)*Sum_{l=0..n-1} ((m! + 1)/(m*m!))^(n-l-1)*(l*(m! + 1) - m)/l!*F(l, m) - (n - m)/m*F(n, m) for m > 0 (see Theorem 5.11 in Komatsu).

A321000 Array of generalized Bell numbers, read by antidiagonals upwards.

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 1, 6, 23, 15, 1, 8, 53, 173, 52, 1, 10, 95, 619, 1602, 203, 1, 12, 149, 1497, 8972, 17575, 877, 1, 14, 215, 2951, 29362, 155067, 222497, 4140, 1, 16, 293, 5125, 72852, 688439, 3109269, 3188806, 21147, 1, 18, 383, 8163, 152402, 2152651, 18766393, 70893872, 50988405, 115975
Offset: 1

Views

Author

N. J. A. Sloane, Oct 26 2018

Keywords

Examples

			The first few antidiagonals are:
1,
1,2,
1,4,5,
1,6,23,15,
1,8,53,173,52,
1,10,95,619,1602,203,
...
		

Crossrefs

The first three rows are A000110, A075729, A109092.
Cf. A257565.

Extensions

More terms from Ilya Gutkovskiy, Oct 29 2018

A331345 a(n) = (1/n^2) * Sum_{k>=1} k^n * (1 - 1/n)^(k - 1).

Original entry on oeis.org

1, 3, 37, 1015, 48601, 3583811, 376372333, 53343571695, 9808511445361, 2270198126932219, 645790373135121061, 221449391959470686375, 90084675298978081317961, 42890688646618728144279987, 23627228721958495690763944861, 14910259060767841554203065990111
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 08 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[1/n^2 Sum[k^n (1 - 1/n)^(k - 1), {k, 1, Infinity}], {n, 2, 16}]]
    Table[n! SeriesCoefficient[(Exp[x] - 1)/(Exp[x] - n (Exp[x] - 1)), {x, 0, n}], {n, 1, 16}]

Formula

a(n) = n! * [x^n] (exp(x) - 1) / (exp(x) - n * (exp(x) - 1)).
a(n) = Sum_{k=1..n} Stirling2(n,k) * (n - 1)^(k - 1) * k!.
a(n) ~ sqrt(2*Pi) * n^(2*n - 1/2) / exp(n + 1/2). - Vaclav Kotesovec, Jun 08 2020
Showing 1-6 of 6 results.