A004126 a(n) = n*(7*n^2 - 1)/6.
0, 1, 9, 31, 74, 145, 251, 399, 596, 849, 1165, 1551, 2014, 2561, 3199, 3935, 4776, 5729, 6801, 7999, 9330, 10801, 12419, 14191, 16124, 18225, 20501, 22959, 25606, 28449, 31495, 34751, 38224, 41921, 45849, 50015, 54426, 59089, 64011
Offset: 0
References
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[n*(7*n^2-1)/6: n in [0..50]]; // Vincenzo Librandi, May 15 2011
-
Maple
seq(binomial(2*n+1,3)-binomial(n+1,3), n=0..38); # Zerinvary Lajos, Jan 21 2007
-
Mathematica
Table[n (7 n^2 - 1)/6, {n, 0, 80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
-
Maxima
makelist(n*(7*n^2-1)/6,n,0,30); /* Martin Ettl, Jan 08 2013 */
-
PARI
vector(100, n, n--; n*(7*n^2 - 1)/6) \\ Altug Alkan, Oct 06 2015
Formula
a(n) = C(2*n+1,3)-C(n+1,3), n>=0. - Zerinvary Lajos, Jan 21 2007
G.f.: x*(1+5*x+x^2)/(1-x)^4. - Colin Barker, Mar 02 2012
E.g.f.: (x/6)*(7*x^2 + 21*x + 6)*exp(x). - G. C. Greubel, Oct 05 2015
a(n) = Sum_{i = n..2*n-1} A000217(i). - Bruno Berselli, Sep 06 2017
a(n) = n^3 + Sum_{k=0..n-1} k*(k+1)/2. Alternately, a(n) = A000578(n) + A000292(n-1) for n>0. - Bruno Berselli, May 23 2018
Comments