cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004613 Numbers that are divisible only by primes congruent to 1 mod 4.

Original entry on oeis.org

1, 5, 13, 17, 25, 29, 37, 41, 53, 61, 65, 73, 85, 89, 97, 101, 109, 113, 125, 137, 145, 149, 157, 169, 173, 181, 185, 193, 197, 205, 221, 229, 233, 241, 257, 265, 269, 277, 281, 289, 293, 305, 313, 317, 325, 337, 349, 353, 365, 373, 377, 389, 397, 401, 409, 421
Offset: 1

Views

Author

Keywords

Comments

Also gives solutions z to x^2+y^2=z^4 with gcd(x,y,z)=1 and x,y,z positive. - John Sillcox (johnsillcox(AT)hotmail.com), Feb 20 2004
A065338(a(n)) = 1. - Reinhard Zumkeller, Jul 10 2010
Product_{k=1..A001221(a(n))} A079260(A027748(a(n),k)) = 1. - Reinhard Zumkeller, Jan 07 2013
A062327(a(n)) = A000005(a(n))^2. (These are the only numbers that satisfy this equation.) - Benedikt Otten, May 22 2013
Numbers that are positive integer divisors of 1 + 4*x^2 where x is a positive integer. - Michael Somos, Jul 26 2013
Numbers k such that there is a "knight's move" of Euclidean distance sqrt(k) which allows the whole of the 2D lattice to be reached. For example, a knight which travels 4 units in any direction and then 1 unit at right angles to the first direction moves a distance sqrt(17) for each move. This knight can reach every square of an infinite chessboard.
Also 1/7 of the area of the n-th largest octagon with angles 3*Pi/4, along the perimeter of which there are only 8 nodes of the square lattice - at its vertices. - Alexander M. Domashenko, Feb 21 2024
Sequence closed under multiplication. Odd values of A031396 and their powers. These are the only numbers m that satisfy the Pell equation (k*x)^2 - D*(m*y)^2 = -1. - Klaus Purath, May 12 2025

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.

Crossrefs

Subsequence of A000404; A002144 is a subsequence. Essentially same as A008846.
Cf. A004614.

Programs

  • Haskell
    a004613 n = a004613_list !! (n-1)
    a004613_list = filter (all (== 1) . map a079260 . a027748_row) [1..]
    -- Reinhard Zumkeller, Jan 07 2013
  • Magma
    [n: n in [1..500] | forall{d: d in PrimeDivisors(n) | d mod 4 eq 1}]; // Vincenzo Librandi, Aug 21 2012
    
  • Maple
    isA004613 := proc(n)
        local p;
        for p in numtheory[factorset](n) do
            if modp(p,4) <> 1 then
                return false;
            end if;
        end do:
        true;
    end proc:
    for n from 1 to 200 do
        if isA004613(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Nov 17 2014
    # second Maple program:
    q:= n-> andmap(i-> irem(i[1], 4)=1, ifactors(n)[2]):
    select(q, [$1..500])[];  # Alois P. Heinz, Jan 13 2024
  • Mathematica
    ok[1] = True; ok[n_] := And @@ (Mod[#, 4] == 1 &) /@ FactorInteger[n][[All, 1]]; Select[Range[421], ok] (* Jean-François Alcover, May 05 2011 *)
    Select[Range[500],Union[Mod[#,4]&/@(FactorInteger[#][[All,1]])]=={1}&] (* Harvey P. Dale, Mar 08 2017 *)
  • PARI
    for(n=1,1000,if(sumdiv(n,d,isprime(d)*if((d-1)%4,1,0))==0,print1(n,",")))
    
  • PARI
    is(n)=n%4==1 && factorback(factor(n)[,1]%4)==1 \\ Charles R Greathouse IV, Sep 19 2016
    

Formula

Numbers of the form x^2 + y^2 where x is even, y is odd and gcd(x, y) = 1.