A004613 Numbers that are divisible only by primes congruent to 1 mod 4.
1, 5, 13, 17, 25, 29, 37, 41, 53, 61, 65, 73, 85, 89, 97, 101, 109, 113, 125, 137, 145, 149, 157, 169, 173, 181, 185, 193, 197, 205, 221, 229, 233, 241, 257, 265, 269, 277, 281, 289, 293, 305, 313, 317, 325, 337, 349, 353, 365, 373, 377, 389, 397, 401, 409, 421
Offset: 1
References
- David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- David Broadhurst and Wadim Zudilin, A magnetic double integral, arXiv:1708.02381 [math.NT], 2017. See p. 7
- Code Golf Stack Exchange, pseudonymous Stack Exchange user 'trichoplax', N-movers: How much of the infinite board can I reach?
Crossrefs
Programs
-
Haskell
a004613 n = a004613_list !! (n-1) a004613_list = filter (all (== 1) . map a079260 . a027748_row) [1..] -- Reinhard Zumkeller, Jan 07 2013
-
Magma
[n: n in [1..500] | forall{d: d in PrimeDivisors(n) | d mod 4 eq 1}]; // Vincenzo Librandi, Aug 21 2012
-
Maple
isA004613 := proc(n) local p; for p in numtheory[factorset](n) do if modp(p,4) <> 1 then return false; end if; end do: true; end proc: for n from 1 to 200 do if isA004613(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Nov 17 2014 # second Maple program: q:= n-> andmap(i-> irem(i[1], 4)=1, ifactors(n)[2]): select(q, [$1..500])[]; # Alois P. Heinz, Jan 13 2024
-
Mathematica
ok[1] = True; ok[n_] := And @@ (Mod[#, 4] == 1 &) /@ FactorInteger[n][[All, 1]]; Select[Range[421], ok] (* Jean-François Alcover, May 05 2011 *) Select[Range[500],Union[Mod[#,4]&/@(FactorInteger[#][[All,1]])]=={1}&] (* Harvey P. Dale, Mar 08 2017 *)
-
PARI
for(n=1,1000,if(sumdiv(n,d,isprime(d)*if((d-1)%4,1,0))==0,print1(n,",")))
-
PARI
is(n)=n%4==1 && factorback(factor(n)[,1]%4)==1 \\ Charles R Greathouse IV, Sep 19 2016
Formula
Numbers of the form x^2 + y^2 where x is even, y is odd and gcd(x, y) = 1.
Comments