cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 43 results. Next

A002144 Pythagorean primes: primes of the form 4*k + 1.

Original entry on oeis.org

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449, 457, 461, 509, 521, 541, 557, 569, 577, 593, 601, 613, 617
Offset: 1

Views

Author

Keywords

Comments

Rational primes that decompose in the field Q(sqrt(-1)). - N. J. A. Sloane, Dec 25 2017
These are the prime terms of A009003.
-1 is a quadratic residue mod a prime p if and only if p is in this sequence.
Sin(a(n)*Pi/2) = 1 with Pi = 3.1415..., see A070750. - Reinhard Zumkeller, May 04 2002
If at least one of the odd primes p, q belongs to the sequence, then either both or neither of the congruences x^2 = p (mod q), x^2 = q (mod p) are solvable, according to Gauss reciprocity law. - Lekraj Beedassy, Jul 17 2003
Odd primes such that binomial(p-1, (p-1)/2) == 1 (mod p). - Benoit Cloitre, Feb 07 2004
Primes that are the hypotenuse of a right triangle with integer sides. The Pythagorean triple is {A002365(n), A002366(n), a(n)}.
Also, primes of the form a^k + b^k, k > 1. - Amarnath Murthy, Nov 17 2003
The square of a(n) is the average of two other squares. This fact gives rise to a class of monic polynomials x^2 + bx + c with b = a(n) that will factor over the integers regardless of the sign of c. See A114200. - Owen Mertens (owenmertens(AT)missouristate.edu), Nov 16 2005
Also such primes p that the last digit is always 1 for the Nexus numbers of form n^p - (n-1)^p. - Alexander Adamchuk, Aug 10 2006
The set of Pythagorean primes is a proper subset of the set of positive fundamental discriminants (A003658). - Paul Muljadi, Mar 28 2008
A079260(a(n)) = 1; complement of A137409. - Reinhard Zumkeller, Oct 11 2008
From Artur Jasinski, Dec 10 2008: (Start)
If we take 4 numbers: 1, A002314(n), A152676(n), A152680(n) then multiplication table modulo a(n) is isomorphic to the Latin square:
1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1
and isomorphic to the multiplication table of {1, i, -i, -1} where i is sqrt(-1), A152680(n) is isomorphic to -1, A002314(n) with i or -i and A152676(n) vice versa -i or i. 1, A002314(n), A152676(n), A152680(n) are subfield of Galois field [a(n)]. (End)
Primes p such that the arithmetic mean of divisors of p^3 is an integer. There are 2 sequences of such primes: this one and A002145. - Ctibor O. Zizka, Oct 20 2009
Equivalently, the primes p for which the smallest extension of F_p containing the square roots of unity (necessarily F_p) contains the 4th roots of unity. In this respect, the n = 2 case of a family of sequences: see n=3 (A129805) and n=5 (A172469). - Katherine E. Stange, Feb 03 2010
Subsequence of A007969. - Reinhard Zumkeller, Jun 18 2011
A151763(a(n)) = 1.
k^k - 1 is divisible by 4*k + 1 if 4*k + 1 is a prime (see Dickson reference). - Gary Detlefs, May 22 2013
Not only are the squares of these primes the sum of two nonzero squares, but the primes themselves are also. 2 is the only prime equal to the sum of two nonzero squares and whose square is not. 2 is therefore not a Pythagorean prime. - Jean-Christophe Hervé, Nov 10 2013
The statement that these primes are the sum of two nonzero squares follows from Fermat's theorem on the sum of two squares. - Jerzy R Borysowicz, Jan 02 2019
The decompositions of the prime and its square into two nonzero squares are unique. - Jean-Christophe Hervé, Nov 11 2013. See the Dickson reference, Vol. II, (B) on p. 227. - Wolfdieter Lang, Jan 13 2015
p^e for p prime of the form 4*k+1 and e >= 1 is the sum of 2 nonzero squares. - Jon Perry, Nov 23 2014
Primes p such that the area of the isosceles triangle of sides (p, p, q) for some integer q is an integer. - Michel Lagneau, Dec 31 2014
This is the set of all primes that are the average of two squares. - Richard R. Forberg, Mar 01 2015
Numbers k such that ((k-3)!!)^2 == -1 (mod k). - Thomas Ordowski, Jul 28 2016
This is a subsequence of primes of A004431 and also of A016813. - Bernard Schott, Apr 30 2022
In addition to the comment from Jean-Christophe Hervé, Nov 10 2013: All powers as well as the products of any of these primes are the sum of two nonzero squares. They are terms of A001481, which is closed under multiplication. - Klaus Purath, Nov 19 2023

Examples

			The following table shows the relationship between several closely related sequences:
Here p = A002144 = primes == 1 (mod 4), p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2 + d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2 - a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
  ---------------------------------
   p  a  b  t_1  c   d t_2 t_3  t_4
  ---------------------------------
   5  1  2   1   3   4   4   3    6
  13  2  3   3   5  12  12   5   30
  17  1  4   2   8  15   8  15   60
  29  2  5   5  20  21  20  21  210
  37  1  6   3  12  35  12  35  210
  41  4  5  10   9  40  40   9  180
  53  2  7   7  28  45  28  45  630
  ...
a(7) = 53 = A002972(7)^2 + (2*A002973(7))^2 = 7^2 + (2*1)^2 = 49 + 4, and this is the only way. - _Wolfdieter Lang_, Jan 13 2015
		

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
  • L. E. Dickson, "History of the Theory of Numbers", Chelsea Publishing Company, 1919, Vol I, page 386
  • L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, Publ. No. 256, Vol. II, Washington D.C., 1920, p. 227.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 132.
  • M. du Sautoy, The Music of the Primes, Fourth Estate / HarperCollins, 2003; see p. 76.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 241, 243.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 90.

Crossrefs

Cf. A004613 (multiplicative closure).
Apart from initial term, same as A002313.
For values of n see A005098.
Primes in A020668.

Programs

  • Haskell
    a002144 n = a002144_list !! (n-1)
    a002144_list = filter ((== 1) . a010051) [1,5..]
    -- Reinhard Zumkeller, Mar 06 2012, Feb 22 2011
    
  • Magma
    [a: n in [0..200] | IsPrime(a) where a is 4*n + 1 ]; // Vincenzo Librandi, Nov 23 2014
    
  • Maple
    a := []; for n from 1 to 500 do if isprime(4*n+1) then a := [op(a),4*n+1]; fi; od: A002144 := n->a[n];
    # alternative
    A002144 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            5;
        else
            for a from procname(n-1)+4 by 4 do
                if isprime(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A002144(n),n=1..100) ; # R. J. Mathar, Jan 31 2024
  • Mathematica
    Select[4*Range[140] + 1, PrimeQ[ # ] &] (* Stefan Steinerberger, Apr 16 2006 *)
    Select[Prime[Range[150]],Mod[#,4]==1&] (* Harvey P. Dale, Jan 28 2021 *)
  • PARI
    select(p->p%4==1,primes(1000))
    
  • PARI
    A002144_next(p=A2144[#A2144])={until(isprime(p+=4),);p} /* NB: p must be of the form 4k+1. Beyond primelimit, this is *much* faster than forprime(p=...,, p%4==1 && return(p)). */
    A2144=List(5); A002144(n)={while(#A2144A002144_next())); A2144[n]}
    \\ M. F. Hasler, Jul 06 2024
    
  • Python
    from sympy import prime
    A002144 = [n for n in (prime(x) for x in range(1,10**3)) if not (n-1) % 4]
    # Chai Wah Wu, Sep 01 2014
    
  • Python
    from sympy import isprime
    print(list(filter(isprime, range(1, 618, 4)))) # Michael S. Branicky, May 13 2021
    
  • SageMath
    def A002144_list(n): # returns all Pythagorean primes <= n
        return [x for x in prime_range(5,n+1) if x % 4 == 1]
    A002144_list(617) # Peter Luschny, Sep 12 2012

Formula

Odd primes of form x^2 + y^2, (x=A002331, y=A002330, with x < y) or of form u^2 + 4*v^2, (u = A002972, v = A002973, with u odd). - Lekraj Beedassy, Jul 16 2004
p^2 - 1 = 12*Sum_{i = 0..floor(p/4)} floor(sqrt(i*p)) where p = a(n) = 4*n + 1. [Shirali]
a(n) = A000290(A002972(n)) + A000290(2*A002973(n)) = A000290(A002331(n+1)) + A000290(A002330(n+1)). - Reinhard Zumkeller, Feb 16 2010
a(n) = A002972(n)^2 + (2*A002973(n))^2, n >= 1. See the Jean-Christophe Hervé Nov 11 2013 comment. - Wolfdieter Lang, Jan 13 2015
a(n) = 4*A005098(n) + 1. - Zak Seidov, Sep 16 2018
From Vaclav Kotesovec, Apr 30 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = A088539.
Product_{k>=1} (1 + 1/a(k)^2) = A243380.
Product_{k>=1} (1 - 1/a(k)^3) = A334425.
Product_{k>=1} (1 + 1/a(k)^3) = A334424.
Product_{k>=1} (1 - 1/a(k)^4) = A334446.
Product_{k>=1} (1 + 1/a(k)^4) = A334445.
Product_{k>=1} (1 - 1/a(k)^5) = A334450.
Product_{k>=1} (1 + 1/a(k)^5) = A334449. (End)
From Vaclav Kotesovec, May 05 2020: (Start)
Product_{k>=1} (1 + 1/A002145(k)) / (1 + 1/a(k)) = Pi/(4*A064533^2) = 1.3447728438248695625516649942427635670667319092323632111110962...
Product_{k>=1} (1 - 1/A002145(k)) / (1 - 1/a(k)) = Pi/(8*A064533^2) = 0.6723864219124347812758324971213817835333659546161816055555481... (End)
Sum_{k >= 1} 1/a(k)^s = (1/2) * Sum_{n >= 1 odd numbers} moebius(n) * log((2*n*s)! * zeta(n*s) * abs(EulerE(n*s - 1)) / (Pi^(n*s) * 2^(2*n*s) * BernoulliB(2*n*s) * (2^(n*s) + 1) * (n*s - 1)!))/n, s >= 3 odd number. - Dimitris Valianatos, May 21 2020
Legendre symbol (-1, a(n)) = +1, for n >= 1. - Wolfdieter Lang, Mar 03 2021

A020882 Ordered hypotenuses (with multiplicity) of primitive Pythagorean triangles.

Original entry on oeis.org

5, 13, 17, 25, 29, 37, 41, 53, 61, 65, 65, 73, 85, 85, 89, 97, 101, 109, 113, 125, 137, 145, 145, 149, 157, 169, 173, 181, 185, 185, 193, 197, 205, 205, 221, 221, 229, 233, 241, 257, 265, 265, 269, 277, 281, 289, 293, 305, 305, 313, 317, 325, 325, 337, 349, 353, 365, 365
Offset: 1

Views

Author

Keywords

Comments

The largest member 'c' of the primitive Pythagorean triples (a,b,c) ordered by increasing c.
These are numbers of the form a^2 + b^2 where gcd(b-a, 2*a*b)=1. - M. F. Hasler, Apr 04 2010
Equivalently, numbers of the form a^2 + b^2 where gcd(a,b) = 1 and a and b are not both odd. To avoid double-counting, require a > b > 0. - Franklin T. Adams-Watters, Mar 15 2015
The density of such points in a circle with radius squared = a(n) is ~ Pi * a(n). Restricting to a > b > 0 reduces this by a factor of 1/8; requiring gcd(a,b)=1 provides a factor of 6/Pi^2; and a, b not both odd is a factor of 2/3. (2/3, not 3/4, because the case a, b both even has already been eliminated.) Multiplying, a(n) * Pi * 1/8 * 6/Pi^2 * 2/3 is a(n) / (2 * Pi). But n is approximately this number of points, so a(n) ~ 2 * Pi * n. Conjectured by David W. Wilson, proof by Franklin T. Adams-Watters, Mar 15 2015
Permutations are in A094194, A088511, A121727, A119321, A113482 and A081804. Entries of A024409 occur here more than once. - R. J. Mathar, Apr 12 2010
The distinct terms of this sequence seem to constitute a subset of the sequence defined as a(n) = (-1)^n + 6*n for n >= 1. - Alexander R. Povolotsky, Mar 15 2015
The terms in this sequence are given by f(m,n) = m^2 + n^2 where m and n are any two integers satisfying m > 1, n < m, the greatest common divisor of m and n is 1, and m and n are both not odd. E.g., f(m,n) = f(2,1) = 2^2 + 1^2 = 4 + 1 = 5. - Agola Kisira Odero, Apr 29 2016

References

  • M. de Frénicle, "Méthode pour trouver la solutions des problèmes par les exclusions", in: "Divers ouvrages de mathématiques et de physique, par Messieurs de l'Académie royale des sciences", Paris, 1693, pp 1-44.

Crossrefs

Cf. A004613, A008846, A020883-A020886, A046086, A046087, A222946 (as a number triangle).

Programs

  • Mathematica
    t={};Do[Do[a=Sqrt[c^2-b^2];If[a>b,Break[]];If[IntegerQ[a]&&GCD[a,b,c]==1,AppendTo[t,c]],{b,c-1,3,-1}],{c,400}];t (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)
    f[c_] := Block[{a = 1, b, lst = {}}, While[b = Sqrt[c^2 - a^2]; a < b, If[ IntegerQ@ b && GCD[a, b, c] == 1, AppendTo[lst, a]]; a++]; lst]
    Join @@ Table[ConstantArray[n, Length@f@n], {n, 1, 400, 4}] (* Robert G. Wilson v, Mar 16 2014; corrected by Andrey Zabolotskiy, Oct 31 2019 *)
  • PARI
    {my( c=0, new=[]); for( b=1,99, for( a=1, b-1, gcd(b-a,2*a*b) == 1 && new=concat(new,a^2+b^2)); new=vecsort(new); for( j=1,#new, new[j] > (b+1)^2 & (new=vecextract(new, Str(j,".."))) & next(2); write("b020882.txt",c++," "new[j])); new=[])} \\ M. F. Hasler, Apr 04 2010

Formula

a(n) = sqrt((A120681(n)^2 + A120682(n)^2)/2). - Lekraj Beedassy, Jun 24 2006
a(n) = sqrt(A046086(n)^2 + A046087(n)^2). - Zak Seidov, Apr 12 2011
a(n) ~ 2*Pi*n. - observation by David W. Wilson, proved by Franklin T. Adams-Watters (cf. comments), Mar 15 2015
a(n) = sqrt(A180620(n)^2 + A231100(n)^2). - Rui Lin, Oct 09 2019

Extensions

Edited by N. J. A. Sloane, May 15 2010

A009003 Hypotenuse numbers (squares are sums of 2 nonzero squares).

Original entry on oeis.org

5, 10, 13, 15, 17, 20, 25, 26, 29, 30, 34, 35, 37, 39, 40, 41, 45, 50, 51, 52, 53, 55, 58, 60, 61, 65, 68, 70, 73, 74, 75, 78, 80, 82, 85, 87, 89, 90, 91, 95, 97, 100, 101, 102, 104, 105, 106, 109, 110, 111, 113, 115, 116, 117, 119, 120, 122, 123, 125, 130, 135, 136, 137, 140
Offset: 1

Views

Author

Keywords

Comments

Multiples of Pythagorean primes A002144 or of primitive Pythagorean triangles' hypotenuses A008846. - Lekraj Beedassy, Nov 12 2003
This is exactly the sequence of positive integers with at least one prime divisor of the form 4k + 1. Compare A072592. - John W. Layman, Mar 12 2008 and Franklin T. Adams-Watters, Apr 26 2009
Circumradius R of the triangles such that the area, the sides and R are integers. - Michel Lagneau, Mar 03 2012
The 2 squares summing to a(n)^2 cannot be equal because sqrt(2) is not rational. - Jean-Christophe Hervé, Nov 10 2013
Closed under multiplication. The primitive elements are those with exactly one prime divisor of the form 4k + 1 with multiplicity one, which are also those for which there exists a unique integer triangle = A084645. - Jean-Christophe Hervé, Nov 11 2013
a(n) are numbers whose square is the mean of two distinct nonzero squares. This creates 1-to-1 mapping between a Pythagorean triple and a "Mean" triple. If the Pythagorean triple is written, abnormally, as {j, k, h} where j^2 +(j+k)^2 = h^2, and h = a(n), then the corresponding "Mean" triple with the same h is {k, 2j, h} where (k^2 + (k+2j)^2)/2 = h^2. For example for h = 5, the Pythagorean triple is {3, 1, 5} and the Mean triple is {1, 6, 5}. - Richard R. Forberg, Mar 01 2015
Integral side lengths of rhombuses with integral diagonals p and q (therefore also with integral areas A because A = pq/2 is some multiple of 24). No such rhombuses are squares. - Rick L. Shepherd, Apr 09 2017
Conjecture: these are bases n in which exists an n-adic integer x satisfying x^5 = x, and 5 is the smallest k>1 such that x^k =x (so x^2, x^3 and x^4 are not x). Example: the 10-adic integer x = ...499879186432 (A120817) satisfies x^5 = x, and x^2, x^3, and x^4 are not x, so 10 is in this sequence. See also A120817, A210850 and A331548. - Patrick A. Thomas, Mar 01 2020
Didactic comment: When students solve a quadratic equation a*x^2 + b*x + c = 0 (a, b, c: integers) with the solution formula, they often make the mistake of calculating b^2 + 4*a*c instead of b^2 - 4*a*c (especially if a or c is negative). If the root then turns out to be an integer, they feel safe. This sequence lists the absolute values of b for which this error can happen. Reasoning: With p^2 = b^2 - 4*a*c and q^2 = b^2 + 4*a*c it follows by addition immediately that p^2 + q^2 = 2*b^2. If 4*a*c < 0, let p = x + y and q = x - y. If 4*a*c > 0, let p = x - y and q = x + y. In both cases follows that y^2 + x^2 = b^2. So every Pythagorean triple gives an absolute value of b for which this error can occur. Example: From (y, x, b) = (3, 4, 5) follows (q^2, b^2, p^2) = (1, 25, 49) or (p^2, b^2, q^2) = (1, 25, 49) with abs(4*a*c) = 24. - Felix Huber, Jul 22 2023
Conjecture: Numbers m such that the limit: Limit_{s->1} zeta(s)*Sum_{k=1..m} [k|m]*A008683(k)*(i^k)/(k^(s - 1)) exists, which is equivalent to numbers m such that abs(Sum_{k=1..m} [k|m]*A008683(k)*(i^k)) = 0. - Mats Granvik, Jul 06 2024

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 98-104.

Crossrefs

Cf. A000404 (sums of 2 squares), A004431 (sums of 2 distinct squares), A009000 (hypotenuse numbers with repetition), A072592, A004613, A187811.
Complement of A004144. Primes in this sequence give A002144. Same as A146984 (integer contraharmonic means) as sets - see Pahikkala 2010, Theorem 5.
Cf. A083025, A084645 (primitive elements), A084646, A084647, A084648, A084649, A006339.

Programs

  • Haskell
    import Data.List (findIndices)
    a009003 n = a009003_list !! (n-1)
    a009003_list = map (+ 1) $ findIndices (> 0) a005089_list
    -- Reinhard Zumkeller, Jan 07 2013
    
  • Maple
    isA009003 := proc(n)
        local p;
        for p in numtheory[factorset](n) do
            if modp(p,4) = 1 then
                return true;
            end if;
        end do:
        false;
    end proc:
    for n from 1 to 200 do
        if isA009003(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Nov 17 2014
  • Mathematica
    f[n_] := Module[{k = 1}, While[(n - k^2)^(1/2) != IntegerPart[(n - k^2)^(1/2)], k++; If[2 * k^2 >= n, k = 0; Break[]]]; k]; A009003 = {}; Do[If[f[n^2] > 0, AppendTo[A009003, n]], {n, 3, 100}]; A009003 (* Vladimir Joseph Stephan Orlovsky, Jun 15 2009 *)
    Select[Range[200], Length[PowersRepresentations[#^2, 2, 2]] > 1 &] (* Alonso del Arte, Feb 11 2014 *)
  • PARI
    is_A009003(n)=setsearch(Set(factor(n)[,1]%4),1)  \\ M. F. Hasler, May 27 2012
    
  • PARI
    list(lim)=my(v=List(),u=vectorsmall(lim\=1)); forprimestep(p=5,lim,4, forstep(n=p,lim,p, u[n]=1)); for(i=5,lim, if(u[i], listput(v,i))); u=0; Vec(v) \\ Charles R Greathouse IV, Jan 13 2022
    
  • Python
    from itertools import count, islice
    from sympy import primefactors
    def A009003_gen(): # generator of terms
        return filter(lambda n:any(map(lambda p: p % 4 == 1,primefactors(n))),count(1))
    A009003_list = list(islice(A009003_gen(),20)) # Chai Wah Wu, Jun 22 2022

Formula

A005089(a(n)) > 0. - Reinhard Zumkeller, Jan 07 2013
a(n) ~ n. - Charles R Greathouse IV, Jan 13 2022
a(n) = sqrt(n-th square in A000404), where A000404 lists the sums of two nonzero squares. - M. F. Hasler, Jun 20 2025

Extensions

Definition edited by Jean-Christophe Hervé, Nov 10 2013

A053755 a(n) = 4*n^2 + 1.

Original entry on oeis.org

1, 5, 17, 37, 65, 101, 145, 197, 257, 325, 401, 485, 577, 677, 785, 901, 1025, 1157, 1297, 1445, 1601, 1765, 1937, 2117, 2305, 2501, 2705, 2917, 3137, 3365, 3601, 3845, 4097, 4357, 4625, 4901, 5185, 5477, 5777, 6085, 6401, 6725, 7057
Offset: 0

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), Apr 06 2000

Keywords

Comments

Subsequence of A004613: all numbers in this sequence have all prime factors of the form 4k+1. E.g., 40001 = 13*17*181, 13 = 4*3 + 1, 17 = 4*4 + 1, 181 = 4*45 + 1. - Cino Hilliard, Aug 26 2006, corrected by Franklin T. Adams-Watters, Mar 22 2011
A000466(n), A008586(n) and a(n) are Pythagorean triples. - Zak Seidov, Jan 16 2007
Solutions x of the Mordell equation y^2 = x^3 - 3a^2 - 1 for a = 0, 1, 2, ... - Michel Lagneau, Feb 12 2010
Ulam's spiral (NW spoke). - Robert G. Wilson v, Oct 31 2011
For n >= 1, a(n) is numerator of radius r(n) of circle with sagitta = n and cord length = 1. The denominator is A008590(n). - Kival Ngaokrajang, Jun 13 2014
a(n)+6 is prime for n = 0..6 and for n = 15..20. - Altug Alkan, Sep 28 2015

References

  • Donald E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA, 1997, Vol. 1, exercise 1.2.1 Nr. 11, p. 19.

Crossrefs

Column 2 of array A188647.
Cf. A016742, A256970 (smallest prime factors), A214345.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

  • GAP
    List([0..45],n->4*n^2+1); # Muniru A Asiru, Nov 01 2018
  • Haskell
    a053755 = (+ 1) . (* 4) . (^ 2)  -- Reinhard Zumkeller, Apr 20 2015
    
  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+5*x^2)/((1-x)^3))); /* or */ I:=[1,5]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2)+8: n in [1..50]]; // Vincenzo Librandi, Jun 26 2013
    
  • Maple
    with (combinat):seq(fibonacci(3,2*n), n=0..42); # Zerinvary Lajos, Apr 21 2008
  • Mathematica
    f[n_] := 4n^2 +1; Array[f, 40] (* Vladimir Joseph Stephan Orlovsky, Sep 02 2008 *)
    CoefficientList[Series[(1 + 2 x + 5 x^2) / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 26 2013 *)
    LinearRecurrence[{3,-3,1},{1,5,17},50] (* Harvey P. Dale, Dec 28 2021 *)
  • PARI
    for(x=0,100,print1(4*x^2+1",")) \\ Cino Hilliard, Aug 26 2006
    
  • Python
    for n in range(0,50): print(4*n**2+1, end=', ') # Stefano Spezia, Nov 01 2018
    

Formula

a(n) = A000466(n) + 2. - Zak Seidov, Jan 16 2007
From R. J. Mathar, Apr 28 2008: (Start)
O.g.f.: (1 + 2*x + 5*x^2)/(1-x)^3.
a(n) = 3a(n-1) - 3a(n-2) + a(n-3). (End)
Equals binomial transform of [1, 4, 8, 0, 0, 0, ...]. - Gary W. Adamson, Apr 30 2008
a(n) = A156701(n)/A087475(n). - Reinhard Zumkeller, Feb 13 2009
For n>0: a(n) = A176271(2*n,n+1); cf. A016754, A000466. - Reinhard Zumkeller, Apr 13 2010
a(n+1) = denominator of Sum_{k=0..n} (-1)^n*(2*n + 1)^3/((2*n + 1)^4 + 4), see Knuth reference. - Reinhard Zumkeller, Apr 11 2010
a(n) = 8*n + a(n-1) - 4. with a(0)=1. - Vincenzo Librandi, Aug 06 2010
a(n) = ((2*n - 1)^2 + (2*n + 1)^2)/2. - J. M. Bergot, May 31 2012
a(n) = 2*a(n-1) - a(n-2) + 8 with a(0)=1, a(1)=5. - Vincenzo Librandi, Jun 26 2013
a(n+1) = a(n) + A017113(n), a(0) = 1. - Altug Alkan, Sep 26 2015
a(n) = A001844(n) + A046092(n-1) = A001844(n-1) + A046092(n). - Bruce J. Nicholson, Aug 07 2017
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/2)*coth(Pi/2))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/2)*csch(Pi/2))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/2)*sinh(Pi/sqrt(2)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/2)*csch(Pi/2). (End)
E.g.f.: exp(x)*(1 + 2*x)^2. - Stefano Spezia, Jun 10 2021

Extensions

Equation corrected, and examples that were based on a different offset removed, by R. J. Mathar, Mar 18 2010

A008846 Hypotenuses of primitive Pythagorean triangles.

Original entry on oeis.org

5, 13, 17, 25, 29, 37, 41, 53, 61, 65, 73, 85, 89, 97, 101, 109, 113, 125, 137, 145, 149, 157, 169, 173, 181, 185, 193, 197, 205, 221, 229, 233, 241, 257, 265, 269, 277, 281, 289, 293, 305, 313, 317, 325, 337, 349, 353, 365, 373, 377, 389, 397, 401, 409, 421, 425, 433
Offset: 1

Views

Author

N. J. A. Sloane, Ralph Peterson (RALPHP(AT)LIBRARY.nrl.navy.mil)

Keywords

Comments

Numbers of the form x^2 + y^2 where x is even, y is odd and gcd(x, y)=1. Essentially the same as A004613.
Numbers n for which there is no solution to 4/n = 2/x + 1/y for integers y > x > 0. Related to A073101. - T. D. Noe, Sep 30 2002
Discovered by Frénicle (on Pythagorean triangles): Méthode pour trouver ..., page 14 on 44. First text of Divers ouvrages ... Par Messieurs de l'Académie Royale des Sciences, in-folio, 6+518+1 pp., Paris, 1693. Also A020882 with only one of doubled terms (first: 65). - Paul Curtz, Sep 03 2008
All divisors of terms are of the form 4*k+1 (products of members of A002144). - Zak Seidov, Apr 13 2011
A024362(a(n)) > 0. - Reinhard Zumkeller, Dec 02 2012
Closed under multiplication. Primitive elements are in A002144. - Jean-Christophe Hervé, Nov 10 2013
Not only the square of these numbers is equal to the sum of two nonzero squares, but the numbers themselves also are; this sequence is then a subsequence of A004431. - Jean-Christophe Hervé, Nov 10 2013
Conjecture: numbers p for which sqrt(-1) exists in the p-adic numbering system. For example the 5-adic number ...2431212, when squared, gives ...4444444, which is -1, and 5 is in the sequence. - Thierry Banel, Aug 19 2022
The above conjecture was proven true by George Bergman. 3 known facts: (1) prime factors of a(n) are equal to 1 mod 4, (2) modulo such primes, sqrt(-1) exists, (3) if sqrt(m) exists mod r, r being odd, this extends to sqrt(m) in the r-adic ring. - Thierry Banel, Jul 04 2025

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, pp. 10, 107.

Crossrefs

Subsequence of A004431 and of A000404 and of A339952; primitive elements: A002144.
Cf. A137409 (complement), disjoint union of A024409 and A120960.

Programs

  • Haskell
    a008846 n = a008846_list !! (n-1)
    a008846_list = filter f [1..] where
       f n = all ((== 1) . (`mod` 4)) $ filter ((== 0) . (n `mod`)) [1..n]
    -- Reinhard Zumkeller, Apr 27 2011
    
  • Maple
    for x from 1 by 2 to 50 do for y from 2 by 2 to 50 do if gcd(x,y) = 1 then print(x^2+y^2); fi; od; od; [ then sort ].
  • Mathematica
    Union[ Map[ Plus@@(#1^2)&, Select[ Flatten[ Array[ {2*#1, 2*#2-1}&, {10, 10} ], 1 ], GCD@@#1 == 1& ] ] ] (* Olivier Gérard, Aug 15 1997 *)
    lst = {}; Do[ If[ GCD[m, n] == 1, a = 2 m*n; b = m^2 - n^2; c = m^2 + n^2; AppendTo[lst, c]], {m, 100}, {n, If[ OddQ@m, 2, 1], m - 1, 2}]; Take[ Union@ lst, 57] (* Robert G. Wilson v, May 02 2009 *)
    Union[Sqrt[#[[1]]^2+#[[2]]^2]&/@Union[Sort/@({Times@@#,(Last[#]^2-First[#]^2)/2}&/@ (Select[Subsets[Range[1,33,2],{2}],GCD@@#==1&]))]] (* Harvey P. Dale, Aug 26 2012 *)
  • PARI
    is(n)=Set(factor(n)[,1]%4)==[1] \\ Charles R Greathouse IV, Nov 06 2015
    
  • Python
    # for an array from the beginning
    from math import gcd, isqrt
    hypothenuses_upto = 433
    A008846 = set()
    for x in range(2, isqrt(hypothenuses_upto)+1):
        for y in range(min(x-1, (yy:=isqrt(hypothenuses_upto-x**2))-(yy%2 == x%2)) , 0, -2):
            if gcd(x,y) == 1: A008846.add(x**2 + y**2)
    print(A008846:=sorted(A008846)) # Karl-Heinz Hofmann, Sep 30 2024
    
  • Python
    # for single k
    from sympy import factorint
    def A008846_isok(k): return not any([(pf-1) % 4 for pf in factorint(k)]) # Karl-Heinz Hofmann, Oct 01 2024

Formula

x^2 + y^2 where x is even, y is odd and gcd(x, y)=1. Essentially the same as A004613.

Extensions

More terms from T. D. Noe, Sep 30 2002

A008784 Numbers k such that sqrt(-1) mod k exists; or, numbers that are primitively represented by x^2 + y^2.

Original entry on oeis.org

1, 2, 5, 10, 13, 17, 25, 26, 29, 34, 37, 41, 50, 53, 58, 61, 65, 73, 74, 82, 85, 89, 97, 101, 106, 109, 113, 122, 125, 130, 137, 145, 146, 149, 157, 169, 170, 173, 178, 181, 185, 193, 194, 197, 202, 205, 218, 221, 226, 229, 233, 241, 250, 257, 265, 269, 274, 277, 281, 289
Offset: 1

Views

Author

Keywords

Comments

Numbers whose prime divisors are all congruent to 1 mod 4, with the exception of at most a single factor of 2. - Franklin T. Adams-Watters, Sep 07 2008
In appears that {a(n)} is the set of proper divisors of numbers of the form m^2+1. - Kaloyan Todorov (kaloyan.todorov(AT)gmail.com), Mar 25 2009 [This conjecture is correct. - Franklin T. Adams-Watters, Oct 07 2009]
If a(n) is a term of this sequence, then so too are all of its divisors (Euler). - Ant King, Oct 11 2010
From Richard R. Forberg, Mar 21 2016: (Start)
For a given a(n) > 2, there are 2^k solutions to sqrt(-1) mod n (for some k >= 1), and 2^(k-1) solutions primitively representing a(n) by x^2 + y^2.
Record setting values for the number of solutions (i.e., the next higher k values), occur at values for a(n) given by A006278.
A224450 and A224770 give a(n) values with exactly one and exactly two solutions, respectively, primitively representing integers as x^2 + y^2.
The 2^k different solutions for sqrt(-1) mod n can written as values for j, with j <= n, such that integers r = sqrt(n*j-1). However, the set of j values (listed from smallest to largest) transform into themselves symmetrically (i.e., largest to smallest) when the solutions are written as n-r. When the same 2^k solutions are written as r-j, it is clear that only 2^(k-1) distinct and independent solutions exist. (End)
Lucas uses the fact that there are no multiples of 3 in this sequence to prove that one cannot have an equilateral triangle on the points of a square lattice. - Michel Marcus, Apr 27 2020
For n > 1, terms are precisely the numbers such that there is at least one pair (m,k) where m + k = a(n), and m*k == 1 (mod a(n)), m > 0 and m <= k. - Torlach Rush, Oct 18 2020
A pair (s,t) such that s+t = a(n) and s*t == +1 (mod a(n)) as above is obtained from a square root of -1 (mod a(n)) for s and t = a(n)-s. - Joerg Arndt, Oct 24 2020
The Diophantine equation x^2 + y^2 = z^5 + z with gcd(x, y, z) = 1 has solutions iff z is a term of this sequence. See Gardiner reference, Olympiad links and A340129. - Bernard Schott, Jan 17 2021
Except for 1, numbers of the form a + b + 2*sqrt(a*b - 1) for positive integers a,b such that a*b-1 is a square. - Davide Rotondo, Nov 10 2024

References

  • B. C. Berndt & R. A. Rankin, Ramanujan: Letters and Commentary, see p. 176; AMS Providence RI 1995.
  • J. W. S. Cassels, Rational Quadratic Forms, Cambridge, 1978.
  • Leonard Eugene Dickson, History of the Theory Of Numbers, Volume II: Diophantine Analysis, Chelsea Publishing Company, 1992, pp.230-242.
  • A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Problem 6 pp. 63 and 167-168 (1985).
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Ch. 20.2-3.

Crossrefs

Apart from the first term, a subsequence of A000404.

Programs

  • Haskell
    import Data.List.Ordered (union)
    a008784 n = a008784_list !! (n-1)
    a008784_list = 1 : 2 : union a004613_list (map (* 2) a004613_list)
    -- Reinhard Zumkeller, Oct 25 2015
  • Maple
    with(numtheory); [seq(mroot(-1,2,p),p=1..300)];
  • Mathematica
    data=Flatten[FindInstance[x^2+y^2==# && 0<=x<=# && 0<=y<=# && GCD[x,y]==1,{x,y},Integers]&/@Range[289],1]; x^2+y^2/.data//Union (* Ant King, Oct 11 2010 *)
    Select[Range[289], And @@ (Mod[#, 4] == 1 & ) /@ (fi = FactorInteger[#]; If[fi[[1]] == {2, 1}, Rest[fi[[All, 1]]], fi[[All, 1]]])&] (* Jean-François Alcover, Jul 02 2012, after Franklin T. Adams-Watters *)
  • PARI
    is(n)=if(n%2==0,if(n%4,n/=2,return(0)));n==1||vecmax(factor(n)[,1]%4)==1 \\ Charles R Greathouse IV, May 10 2012
    
  • PARI
    list(lim)=my(v=List([1,2]),t); lim\=1; for(x=2,sqrtint(lim-1), t=x^2; for(y=0,min(x-1,sqrtint(lim-t)), if(gcd(x,y)==1, listput(v,t+y^2)))); Set(v) \\ Charles R Greathouse IV, Sep 06 2016
    
  • PARI
    for(n=1,300,if(issquare(Mod(-1, n)),print1(n,", "))); \\ Joerg Arndt, Apr 27 2020
    

Extensions

Checked by T. D. Noe, Apr 19 2007

A004614 Numbers that are divisible only by primes congruent to 3 mod 4.

Original entry on oeis.org

1, 3, 7, 9, 11, 19, 21, 23, 27, 31, 33, 43, 47, 49, 57, 59, 63, 67, 69, 71, 77, 79, 81, 83, 93, 99, 103, 107, 121, 127, 129, 131, 133, 139, 141, 147, 151, 161, 163, 167, 171, 177, 179, 189, 191, 199, 201, 207, 209, 211, 213, 217, 223, 227, 231, 237, 239, 243, 249, 251
Offset: 1

Views

Author

Keywords

Comments

Numbers whose factorization as Gaussian integers is the same as their factorization as integers. - Franklin T. Adams-Watters, Oct 14 2005
Closed under multiplication. Primitive elements are the primes of form 4*k+3. - Gerry Martens, Jun 17 2020

Crossrefs

Cf. A004613.
Cf. A002145 (subsequence of primes).

Programs

  • Haskell
    a004614 n = a004614_list !! (n-1)
    a004614_list = filter (all (== 1) . map a079261 . a027748_row) [1..]
    -- Reinhard Zumkeller, Jan 07 2013
    
  • Magma
    [n: n in [1..300] | forall{d: d in PrimeDivisors(n) | d mod 4 eq 3}]; // Vincenzo Librandi, Aug 21 2012
    
  • Maple
    q:= n-> andmap(i-> irem(i[1], 4)=3, ifactors(n)[2]):
    select(q, [$1..500])[];  # Alois P. Heinz, Jan 13 2024
  • Mathematica
    ok[1] = True; ok[n_] := And @@ (Mod[#, 4] == 3 &) /@ FactorInteger[n][[All, 1]]; Select[Range[251], ok] (* Jean-François Alcover, May 05 2011 *)
    A004614 = Select[Range[251],Length@Reduce[s^2 + t^2 == s # && s # > t > 0, Integers] == 0 &] (* Gerry Martens, Jun 05 2020 *)
  • PARI
    for(n=1,1000,if(sumdiv(n,d,isprime(d)*if((d-3)%4,1,0))==0, print1(n,",")))
    
  • PARI
    forstep(n=1,999,2,for(j=1,#t=factor(n)[,1],t[j]%4==1 && next(2)); print1(n", ")) \\ M. F. Hasler, Feb 26 2008
    
  • PARI
    list(lim)=my(v=List([1]),cur,idx,newIdx); forprime(p=3,lim, if(p%4>1, listput(v,p))); for(i=2,#v, cur=v[i]; idx=1; while(v[idx]*cur <= lim, my(newidx=#v+1,t); for(j=idx, #v, t=cur*v[j]; if(t<=lim, listput(v, t))); idx=newidx)); Set(v) \\ Charles R Greathouse IV, Feb 06 2018
    
  • Python
    from itertools import count, islice
    from sympy import primefactors
    def A004614_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n: n&1 and all(p&2 for p in primefactors(n>>(~n & n-1).bit_length())), count(max(startvalue,1)))
    A004614_list = list(islice(A004614_gen(),30)) # Chai Wah Wu, Aug 21 2024

Formula

Product(A079261(A027748(a(n),k)): k=1..A001221(a(n))) = 1. - Reinhard Zumkeller, Jan 07 2013

A267099 Fully multiplicative involution swapping the positions of 4k+1 and 4k+3 primes: a(1) = 1; a(prime(k)) = A267101(k), a(x*y) = a(x)*a(y) for x, y > 1.

Original entry on oeis.org

1, 2, 5, 4, 3, 10, 13, 8, 25, 6, 17, 20, 7, 26, 15, 16, 11, 50, 29, 12, 65, 34, 37, 40, 9, 14, 125, 52, 19, 30, 41, 32, 85, 22, 39, 100, 23, 58, 35, 24, 31, 130, 53, 68, 75, 74, 61, 80, 169, 18, 55, 28, 43, 250, 51, 104, 145, 38, 73, 60, 47, 82, 325, 64, 21, 170, 89, 44, 185, 78, 97, 200, 59, 46, 45, 116, 221, 70, 101
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2016

Keywords

Comments

Lexicographically earliest self-inverse permutation of natural numbers where each prime of the form 4k+1 is replaced by a prime of the form 4k+3 and vice versa, with the composite numbers determined by multiplicativity.
Fully multiplicative with a(p_n) = p_{A267100(n)} = A267101(n).
Maps each term of A004613 to some term of A004614, each (nonzero) term of A001481 to some term of A268377 and each term of A004431 to some term of A268378 and vice versa.
Sequences A072202 and A078613 are closed with respect to this permutation.

Crossrefs

Cf. A000035, A000040, A000720, A010051, A020639, A032742, A267100, A267101, A354102 (Möbius transform), A354103 (inverse Möbius transform), A354192 (fixed points).
Cf. also A108548.

Programs

  • PARI
    up_to = 2^16;
    A267097list(up_to) = { my(v=vector(up_to),i=0,c=0); forprime(p=2,prime(up_to), if(1==(p%4), c++); i++; v[i] = c); (v); };
    v267097 = A267097list(up_to);
    A267097(n) = v267097[n];
    A267098(n) = ((n-1)-A267097(n));
    list_primes_of_the_form(up_to,m,k) = { my(v=vector(up_to),i=0); forprime(p=2,, if(k==(p%m), i++; v[i] = p; if(i==up_to,return(v)))); };
    v002144 = list_primes_of_the_form(2*up_to,4,1);
    A002144(n) = v002144[n];
    v002145 = list_primes_of_the_form(2*up_to,4,3);
    A002145(n) = v002145[n];
    A267101(n) = if(1==n,2,if(1==(prime(n)%4),A002145(A267097(n)),A002144(A267098(n))));
    A267099(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A267101(primepi(f[k,1]))); factorback(f); }; \\ Antti Karttunen, May 18 2022
    (Scheme, with memoization-macro definec)
    (definec (A267099 n) (cond ((<= n 1) n) ((= 1 (A010051 n)) (A267101 (A000720 n))) (else (* (A267099 (A020639 n)) (A267099 (A032742 n))))))

Formula

a(1) = 1; after which, if n is k-th prime [= A000040(k)], then a(n) = A267101(k), otherwise a(A020639(n)) * a(A032742(n)).
Other identities. For all n >= 1:
a(A000040(n)) = A267101(n).
a(2*n) = 2*a(n).
a(3*n) = 5*a(n).
a(5*n) = 3*a(n).
a(7*n) = 13*a(n).
a(11*n) = 17*a(n).
etc. See examples in A267101.
A000035(n) = A000035(a(n)). [Preserves the parity of n.]
A005094(a(n)) = -A005094(n).
A079635(a(n)) = -A079635(n).

Extensions

Verbal description prefixed to the name by Antti Karttunen, May 19 2022

A031396 Numbers k such that Pell equation x^2 - k*y^2 = -1 is soluble.

Original entry on oeis.org

1, 2, 5, 10, 13, 17, 26, 29, 37, 41, 50, 53, 58, 61, 65, 73, 74, 82, 85, 89, 97, 101, 106, 109, 113, 122, 125, 130, 137, 145, 149, 157, 170, 173, 181, 185, 193, 197, 202, 218, 226, 229, 233, 241, 250, 257, 265, 269, 274, 277, 281, 290, 293, 298
Offset: 1

Views

Author

Keywords

Comments

Terms are divisible neither by 4 nor by a prime of the form 4*k + 3 (although these conditions are not sufficient - compare A031398). - Lekraj Beedassy, Aug 17 2005
This is the set of integer solutions of all quadratic forms m^2*x^2 -/+ b*x + c with discriminant b^2 - 4*m^2*c = -4 where m is any term of A004613. - Klaus Purath, Jun 18 2025

References

  • Harvey Cohn, "Advanced Number Theory".

Crossrefs

Equals {1} U A003814.
Cf. A031398, A002313, A133204, A130226 (values of x).
See also A322781, A323271, A323272.

Programs

A175647 Decimal expansion of the Product_{primes p == 1 (mod 4)} 1/(1-1/p^2).

Original entry on oeis.org

1, 0, 5, 6, 1, 8, 2, 1, 2, 1, 7, 2, 6, 8, 1, 6, 1, 4, 1, 7, 3, 7, 9, 3, 0, 7, 6, 5, 3, 1, 6, 2, 1, 9, 8, 9, 0, 5, 8, 7, 5, 8, 0, 4, 2, 5, 4, 6, 0, 7, 0, 8, 0, 1, 2, 0, 0, 4, 3, 0, 6, 1, 9, 8, 3, 0, 2, 7, 9, 2, 8, 1, 6, 0, 6, 2, 2, 2, 6, 9, 3, 0, 4, 8, 9, 5, 1, 2, 9, 5, 8, 3, 7, 2, 9, 1, 5, 9, 7, 1, 8, 4, 7, 5, 0
Offset: 1

Views

Author

R. J. Mathar, Aug 01 2010

Keywords

Comments

The Euler product of the Riemann zeta function at 2 restricted to primes in A002144, which is the inverse of the infinite product (1-1/5^2)*(1-1/13^2)*(1-1/17^2)*(1-1/29^2)*...
There is a complementary Product_{primes p == 3 (mod 4)} 1/(1-1/p^2) = 1.16807558541051428866969673706404040136467... such that (this constant here)*1.16807.../(1-1/2^2) = zeta(2) = A013661.

Examples

			1.0561821217268161417379307653162198905...
		

Crossrefs

Programs

  • Mathematica
    digits = 105;
    LandauRamanujanK = 1/Sqrt[2]*NProduct[((1 - 2^(-2^n))*Zeta[2^n]/  DirichletBeta[2^n])^(1/2^(n+1)), {n, 1, 24}, WorkingPrecision -> digits+5];
    RealDigits[1/(4*LandauRamanujanK/Pi)^2, 10, digits][[1]] (* Jean-François Alcover, Jan 12 2021 *)

Formula

Equals 1/A088539. - Vaclav Kotesovec, May 05 2020
From Amiram Eldar, Sep 27 2020: (Start)
Equals Sum_{k>=1} 1/A004613(k)^2.
The complementary product equals Sum_{k>=1} 1/A004614(k)^2. (End)

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020
Showing 1-10 of 43 results. Next