cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A004642 Powers of 2 written in base 3.

Original entry on oeis.org

1, 2, 11, 22, 121, 1012, 2101, 11202, 100111, 200222, 1101221, 2210212, 12121201, 102020102, 211110211, 1122221122, 10022220021, 20122210112, 111022121001, 222122012002, 1222021101011, 10221112202022, 21220002111121, 120210012000012, 1011120101000101, 2100010202000202
Offset: 0

Views

Author

Keywords

Comments

When n is odd, a(n) ends in 1, and when n is even, a(n) ends in 2, since 2^n is congruent to 1 mod 3 when n is odd and to 2 mod 3 when n is even. - Alonso del Arte Dec 11 2009
Sloane (1973) conjectured a(n) always has a 0 between the most and least significant digits if n > 15 (see A102483 and A346497).
Erdős (1978) conjectured that for n > 8 a(n) has at least one 2 (see link to Terry Tao's blog). - Dmitry Kamenetsky, Jan 10 2017

References

  • N. J. A. Sloane, The Persistence of a Number, J. Recr. Math. 6 (1973), 97-98.

Crossrefs

Cf. A000079: powers of 2 written in base 10.
Cf. A004643, ..., A004655: powers of 2 written in base 4, 5, ..., 16.
Cf. A004656, A004658, A004659, ..., A004663: powers of 3 written in base 2, 4, 5, ..., 9.

Programs

  • Magma
    [Seqint(Intseq(2^n, 3)): n in [0..30]]; // G. C. Greubel, Sep 10 2018
  • Mathematica
    Table[FromDigits[IntegerDigits[2^n, 3]], {n, 25}] (* Alonso del Arte Dec 11 2009 *)
  • PARI
    a(n)=fromdigits(digits(2^n,3)) \\ M. F. Hasler, Jun 23 2018
    

A096881 Expansion of g.f. (1 + 4*x)/(1 - 17*x^2).

Original entry on oeis.org

1, 4, 17, 68, 289, 1156, 4913, 19652, 83521, 334084, 1419857, 5679428, 24137569, 96550276, 410338673, 1641354692, 6975757441, 27903029764, 118587876497, 474351505988, 2015993900449, 8063975601796, 34271896307633, 137087585230532, 582622237229761, 2330488948919044
Offset: 0

Views

Author

Paul Barry, Jul 14 2004

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,4,17]; [n le 3 select I[n] else 17*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 26 2016
  • Mathematica
    CoefficientList[Series[(1+4x)/(1-17x^2),{x,0,30}],x] (* or *) LinearRecurrence[ {0,17},{1,4},30] (* Harvey P. Dale, Jan 21 2012 *)
  • PARI
    Vec((1+4*x)/(1-17*x^2) + O(x^40)) \\ Michel Marcus, Jan 26 2016
    

Formula

a(n) = 3*a(n-1) + 4*a(n-2) + 17^floor((n-2)/2).
a(n) = Sum_{k=0..floor(n/2)} binomial(floor(n/2), k)*4^(n-2*k).
a(n) = 17*a(n-2), n>1. - Harvey P. Dale, Jan 21 2012
E.g.f.: cosh(sqrt(17)*x) + 4*sinh(sqrt(17)*x)/sqrt(17). - Stefano Spezia, Mar 31 2023

Extensions

More terms from Stefano Spezia, Mar 31 2023

A096882 Expansion of g.f. (1 + 7*x)/(1 - 50*x^2).

Original entry on oeis.org

1, 7, 50, 350, 2500, 17500, 125000, 875000, 6250000, 43750000, 312500000, 2187500000, 15625000000, 109375000000, 781250000000, 5468750000000, 39062500000000, 273437500000000, 1953125000000000, 13671875000000000, 97656250000000000, 683593750000000000, 4882812500000000000
Offset: 0

Views

Author

Paul Barry, Jul 14 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[Binomial[Floor[n/2],k]7^(n-2k),{k,0,Floor[n/2]}]; Array[a,25,0] (* Stefano Spezia, Mar 31 2023 *)
    LinearRecurrence[{0,50},{1,7},30] (* Harvey P. Dale, Sep 20 2024 *)

Formula

a(n) = 6*a(n-1) + 7*a(n-2) + 50^floor((n-2)/2).
a(n) = Sum_{k=0..floor(n/2)} binomial(floor(n/2), k)*7^(n-2*k).
E.g.f.: cosh(5*sqrt(2)*x) + 7*sinh(5*sqrt(2)*x)/(5*sqrt(2)). - Stefano Spezia, Mar 31 2023

Extensions

More terms from Stefano Spezia, Mar 31 2023

A096883 Expansion of (1+10x)/(1-101x^2).

Original entry on oeis.org

1, 10, 101, 1010, 10201, 102010, 1030301, 10303010, 104060401, 1040604010, 10510100501, 105101005010, 1061520150601, 10615201506010, 107213535210701, 1072135352107010, 10828567056280801, 108285670562808010
Offset: 0

Views

Author

Paul Barry, Jul 14 2004

Keywords

Crossrefs

Formula

a(n)=9a(n-1)+10a(n-2)+101^floor((n-2)/2); a(n)=sum{k=0..floor(n/2), binomial(floor(n/2), k)10^(n-2k) }.
Showing 1-4 of 4 results.