cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A323887 Sum of Per Nørgård's "infinity sequence" (A004718) and its Dirichlet inverse (A323886).

Original entry on oeis.org

2, 0, 0, 1, 0, -4, 0, -1, 4, 0, 0, 2, 0, -6, 0, 1, 0, 0, 0, 0, 12, -2, 0, -2, 0, 2, 0, 3, 0, -8, 0, -1, 4, 0, 0, 2, 0, -6, -4, 0, 0, 10, 0, 1, 16, -4, 0, 2, 9, -6, 0, -1, 0, 0, 0, -3, 12, 4, 0, 4, 0, -10, -20, 1, 0, 0, 0, 0, 8, -2, 0, -2, 0, 2, 12, 3, 6, -12, 0, 0, -4, -2, 0, 1, 0, -4, -8, -1, 0, 16, -6, 2, 20, -6, 0, -2, 0, 11, 0, 3, 0, -8, 0, 1, 28
Offset: 1

Views

Author

Antti Karttunen, Feb 08 2019

Keywords

Comments

The composer Per Nørgård's name is also written in the OEIS as Per Noergaard.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    A004718list(up_to) = { my(v=vector(up_to)); v[1]=1; v[2]=-1; for(n=3, up_to, v[n] = if(n%2, 1+v[n>>1], -v[n/2])); (v); }; \\ After code in A004718.
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA004718list(up_to);
    A004718(n) = v004718[n];
    v323886 = DirInverse(v004718);
    A323886(n) = v323886[n];
    A323887(n) = (A004718(n)+A323886(n));

Formula

a(n) = A004718(n) + A323886(n).

A083866 Positions of zeros in Per Nørgård's infinity sequence (A004718).

Original entry on oeis.org

0, 5, 10, 17, 20, 27, 34, 40, 45, 54, 65, 68, 75, 80, 85, 90, 99, 105, 108, 119, 130, 136, 141, 150, 160, 165, 170, 177, 180, 187, 198, 210, 216, 221, 238, 257, 260, 267, 272, 277, 282, 291, 297, 300, 311, 320, 325, 330, 337, 340, 347, 354, 360
Offset: 0

Views

Author

Ralf Stephan, May 07 2003

Keywords

Comments

First differences seem to be always >2.
Many (but not all) prime members are in A005107.
The composer Per Nørgård's name is also written in the OEIS as Per Noergaard.

Crossrefs

Programs

  • Haskell
    a083866 n = a083866_list !! n
    a083866_list = filter ((== 0) . a004718) [0..]
    -- Reinhard Zumkeller, Mar 19 2015, Nov 10 2012
    
  • Python
    from itertools import groupby, islice
    def A083866_gen(startvalue=0): # generator of terms >= startvalue
        n, c = max(0,startvalue),0
        for k, g in groupby(bin(n)[2:]):
            c = c+len(list(g)) if k == '1' else (-c if len(list(g))&1 else c)
        while True:
            if c == 0: yield n
            n += 1
            c = c-t-1 if (t:=(~n & n-1).bit_length())&1 else t+1-c
    A083866_list = list(islice(A083866_gen(),20)) # Chai Wah Wu, Mar 02 2023

A323909 Balanced ternary representation of A004718, Per Nørgård's "infinity sequence".

Original entry on oeis.org

0, 1, 2, 5, 1, 0, 7, 3, 2, 5, 0, 1, 5, 2, 6, 4, 1, 0, 7, 3, 0, 1, 2, 5, 7, 3, 1, 0, 3, 7, 8, 17, 2, 5, 0, 1, 5, 2, 6, 4, 0, 1, 2, 5, 1, 0, 7, 3, 5, 2, 6, 4, 2, 5, 0, 1, 6, 4, 5, 2, 4, 6, 22, 15, 1, 0, 7, 3, 0, 1, 2, 5, 7, 3, 1, 0, 3, 7, 8, 17, 0, 1, 2, 5, 1, 0, 7, 3, 2, 5, 0, 1, 5, 2, 6, 4, 7, 3, 1, 0, 3, 7, 8, 17, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Feb 10 2019

Keywords

Comments

The composer Per Nørgård's name is also written in the OEIS as Per Noergaard.

Crossrefs

Cf. A004718, A083866 (positions of zeros), A117966, A117967, A117968, A323907 (rgs-transform), A323908.

Programs

Formula

If A004718(n) >= 0, then a(n) = A117967(A004718(n)), otherwise a(n) = A117968(-A004718(n)).
For all n >= 1, A117966(a(n)) = A004718(n).

A323886 Dirichlet inverse of A004718, Per Nørgård's "infinity sequence".

Original entry on oeis.org

1, 1, -2, 0, 0, -2, -3, 0, 2, 0, -1, 0, 1, -3, -4, 0, 0, 2, -3, 0, 11, -1, -2, 0, -3, 1, 0, 0, 2, -4, -5, 0, 2, 0, -1, 0, 1, -3, -8, 0, -1, 11, -2, 0, 16, -2, -3, 0, 10, -3, -4, 0, -2, 0, -1, 0, 8, 2, 1, 0, 3, -5, -26, 0, 0, 2, -3, 0, 7, -1, -2, 0, -3, 1, 12, 0, 8, -8, -5, 0, -5, -1, -2, 0, 0, -2, -11, 0, -2, 16, -7, 0, 21, -3, -4, 0, -3, 10, 0, 0, 2, -4, -5, 0
Offset: 1

Views

Author

Antti Karttunen, Feb 08 2019

Keywords

Comments

The composer Per Nørgård's name is also written in the OEIS as Per Noergaard.

Crossrefs

Programs

  • Mathematica
    b[0] = 0;
    b[n_?EvenQ] := b[n] = -b[n/2];
    b[n_] := b[n] = b[(n - 1)/2] + 1;
    a[n_] := a[n] = If[n == 1, 1, -Sum[b[n/d] a[d], {d, Most@ Divisors[n]}]];
    Array[a, 100] (* Jean-François Alcover, Feb 16 2020 *)
  • PARI
    up_to = 65537;
    A004718list(up_to) = { my(v=vector(up_to)); v[1]=1; v[2]=-1; for(n=3, up_to, v[n] = if(n%2, v[n>>1]+1, -v[n/2])); (v); }; \\ After code in A004718.
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1])*sumdiv(n, d, if(dA004718list(up_to));
    A323886(n) = v323886[n];

A255723 Another variant of Per Nørgård's "infinity sequence", cf. A004718: t(0) = 0; t(4*n) = t(n); t(4*n+1) = t(n) - 2; t(4*n+2) = -t(n) - 1; t(4*n+3) = t(n) + 2.

Original entry on oeis.org

0, -2, -1, 2, -2, -4, 1, 0, -1, -3, 0, 1, 2, 0, -3, 4, -2, -4, 1, 0, -4, -6, 3, -2, 1, -1, -2, 3, 0, -2, -1, 2, -1, -3, 0, 1, -3, -5, 2, -1, 0, -2, -1, 2, 1, -1, -2, 3, 2, 0, -3, 4, 0, -2, -1, 2, -3, -5, 2, -1, 4, 2, -5, 6, -2, -4, 1, 0, -4, -6, 3, -2, 1, -1
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 19 2015

Keywords

Comments

Per Nørgård's surname is also written as Noergaard;
example of a sequence sharing with A004718 some main characterizing properties, see link (chapter 7).

References

  • Yu Hin (Gary) Au, Christopher Drexler-Lemire, and Jeffrey Shallit, "Notes and note pairs in Norgard's infinity series", J. of Mathematics and Music (2017). DOI: http://dx.doi.org/10.1080/17459737.2017.1299807

Crossrefs

Programs

  • Haskell
    a255723 n = a255723_list !! n
    a255723_list = 0 : concat (transpose [map (subtract 2) a255723_list,
                                          map (-1 -) a255723_list,
                                          map (+ 2) a255723_list,
                                          tail a255723_list])

A256184 First of two variations by Per Nørgård of his "infinity sequence", cf. A004718: u(0) = 0; u(3*n) = -u(n); u(3*n+1) = u(n) - 2; u(3*n+2) = u(n) - 1.

Original entry on oeis.org

0, -2, -1, 2, -4, -3, 1, -3, -2, -2, 0, 1, 4, -6, -5, 3, -5, -4, -1, -1, 0, 3, -5, -4, 2, -4, -3, 2, -4, -3, 0, -2, -1, -1, -1, 0, -4, 2, 3, 6, -8, -7, 5, -7, -6, -3, 1, 2, 5, -7, -6, 4, -6, -5, 1, -3, -2, 1, -3, -2, 0, -2, -1, -3, 1, 2, 5, -7, -6, 4, -6, -5
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 19 2015

Keywords

Comments

Per Nørgård's surname is also written as Noergaard.
Not squarefree in contrast to A004718, first repetition of order 3: a(32) = a(33) = a(34) = -1, see link.

Crossrefs

Programs

  • Haskell
    a256184 n = a256184_list !! n
    a256184_list = 0 : concat (transpose [map (subtract 2) a256184_list,
                                          map (subtract 1) a256184_list,
                                          map negate $ tail a256184_list])
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def a(n): return 0 if n == 0 else (a(n//3) - (3-n%3)) if n%3 else -a(n//3)
    print([a(n) for n in range(72)]) # Michael S. Branicky, Sep 02 2021

A323907 Lexicographically earliest positive sequence such that a(i) = a(j) => A004718(i) = A004718(j), for all i, j >= 0.

Original entry on oeis.org

1, 2, 3, 4, 2, 1, 5, 6, 3, 4, 1, 2, 4, 3, 7, 8, 2, 1, 5, 6, 1, 2, 3, 4, 5, 6, 2, 1, 6, 5, 9, 10, 3, 4, 1, 2, 4, 3, 7, 8, 1, 2, 3, 4, 2, 1, 5, 6, 4, 3, 7, 8, 3, 4, 1, 2, 7, 8, 4, 3, 8, 7, 11, 12, 2, 1, 5, 6, 1, 2, 3, 4, 5, 6, 2, 1, 6, 5, 9, 10, 1, 2, 3, 4, 2, 1, 5, 6, 3, 4, 1, 2, 4, 3, 7, 8, 5, 6, 2, 1, 6, 5, 9, 10, 2, 1
Offset: 0

Views

Author

Antti Karttunen, Feb 09 2019

Keywords

Comments

Restricted growth sequence transform of A004718, Per Nørgård's "infinity sequence".
The composer Per Nørgård's name is also written in the OEIS as Per Noergaard.

Crossrefs

Restricted growth sequence transform of A004718, A323908 and A323909.
Cf. A083866 (positions of ones).

Programs

  • PARI
    up_to = 65535;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A004718list(up_to) = { my(v=vector(up_to)); v[1]=1; v[2]=-1; for(n=3, up_to, v[n] = if(n%2, 1+v[n>>1], -v[n/2])); (v); }; \\ After code in A004718.
    v004718 = A004718list(up_to);
    A004718(n) = if(!n,n,v004718[n]);
    v323907 = rgs_transform(vector(1+up_to,n,A004718(n-1)));
    A323907(n) = v323907[1+n];

A323908 Reversing binary representation of A004718, Per Nørgård's "infinity sequence".

Original entry on oeis.org

0, 1, 3, 2, 1, 0, 6, 7, 3, 2, 0, 1, 2, 3, 5, 4, 1, 0, 6, 7, 0, 1, 3, 2, 6, 7, 1, 0, 7, 6, 12, 13, 3, 2, 0, 1, 2, 3, 5, 4, 0, 1, 3, 2, 1, 0, 6, 7, 2, 3, 5, 4, 3, 2, 0, 1, 5, 4, 2, 3, 4, 5, 15, 14, 1, 0, 6, 7, 0, 1, 3, 2, 6, 7, 1, 0, 7, 6, 12, 13, 0, 1, 3, 2, 1, 0, 6, 7, 3, 2, 0, 1, 2, 3, 5, 4, 6, 7, 1, 0, 7, 6, 12, 13, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Feb 09 2019

Keywords

Comments

The composer Per Nørgård's name is also written in the OEIS as Per Noergaard.

Crossrefs

Cf. A004718, A048724, A065620, A065621, A083866 (positions of zeros), A323907 (rgs-transform), A323909.

Programs

  • PARI
    up_to = 65536;
    A004718list(up_to) = { my(v=vector(up_to)); v[1]=1; v[2]=-1; for(n=3, up_to, v[n] = if(n%2, 1+v[n>>1], -v[n/2])); (v); }; \\ After code in A004718.
    v004718 = A004718list(up_to);
    A004718(n) = if(!n,n,v004718[n]);
    A048724(n) = bitxor(n, n<<1);
    A065621(n) = bitxor(n-1,n+n-1);
    A323908(n) = if(A004718(n)<=0, A048724(-A004718(n)), A065621(A004718(n)));
    
  • Python
    from itertools import groupby
    def A323908(n):
        c = 0
        for k, g in groupby(bin(n)[2:]):
            c = c+len(list(g)) if k == '1' else (-c if len(list(g))&1 else c)
        return -c^(-c<<1) if c<=0 else c^(c&~-c)<<1 # Chai Wah Wu, Mar 02 2023

Formula

If A004718(n) <= 0, a(n) = A048724(-A004718(n)), otherwise a(n) = A065621(A004718(n)).
For all n >= 1, A065620(a(n)) = A004718(n).

A256185 Second of two variations by Per Nørgård of his "infinity sequence", cf. A004718: v(0) = 0; v(3*n) = -v(n); v(3*n+1) = v(n) - 3; v(3*n+2) = -2 - v(n).

Original entry on oeis.org

0, -3, -2, 3, -6, 1, 2, -5, 0, -3, 0, -5, 6, -9, 4, -1, -2, -3, -2, -1, -4, 5, -8, 3, 0, -3, -2, 3, -6, 1, 0, -3, -2, 5, -8, 3, -6, 3, -8, 9, -12, 7, -4, 1, -6, 1, -4, -1, 2, -5, 0, 3, -6, 1, 2, -5, 0, 1, -4, -1, 4, -7, 2, -5, 2, -7, 8, -11, 6, -3, 0, -5, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 19 2015

Keywords

Comments

Per Nørgård's surname is also written as Noergaard;
for all odd j exists k such that abs(a(k+1)-a(k)) = j, in contrast to A004718, where this holds also for even j > 0, see link.

References

  • Yu Hin (Gary) Au, Christopher Drexler-Lemire, and Jeffrey Shallit, "Notes and note pairs in Norgard's infinity series", J. of Mathematics and Music (2017). DOI: http://dx.doi.org/10.1080/17459737.2017.1299807

Crossrefs

Programs

  • Haskell
    a256185 n = a256185_list !! n
    a256185_list = 0 : concat (transpose [map (subtract 3) a256185_list,
                                          map (-2 -) a256185_list,
                                          map negate $ tail a256185_list])

A325803 Nonzero terms of Product_{k=0..floor(log_2(n))} (1 + A004718(floor(n/(2^k)))).

Original entry on oeis.org

1, 2, 6, -6, 24, -18, -48, 120, 18, -72, -192, 48, -360, 720, 54, 144, -360, 384, -960, 144, -1800, 720, -2880, 5040, -54, 216, 576, -144, 1080, -2160, 1536, -384, 2880, -5760, -144, 576, 5400, -10800, 2880, -720, -17280, 8640, -25200, 40320, -162, -432, 1080
Offset: 1

Views

Author

Mikhail Kurkov, May 22 2019

Keywords

Comments

See A329893.

Crossrefs

Programs

  • Mathematica
    a[n_?EvenQ] := a[n] = -a[n/2]; a[0] = 0; a[n_] := a[n] = a[(n - 1)/2] + 1; DeleteCases[Table[Product[ 1 + a[Floor[n/(2^k)]], {k, 0, Floor[Log2[n]]}], {n, 0, 200}], 0] (* Michael De Vlieger, Apr 22 2024, after Jean-François Alcover at A004718 *)
  • PARI
    b(n) = if(n==0, 0, (-1)^(n+1)*b(n\2) + n%2); \\ A004718
    f(n) = if(n==0, 1, prod(k=0, logint(n,2), 1+b(n\2^k)));
    lista(nn) = for (n=0, nn, if (f(n), print1(f(n), ", "))); \\ Michel Marcus, May 26 2019
    
  • Python
    from itertools import count, islice
    from math import prod
    def A325803_gen(): # generator of terms
        for n in count(0):
            c, s = [0]*(m:=n.bit_length()), bin(n)[2:]
            for i in range(m):
                if s[i]=='1':
                    for j in range(m-i):
                        c[j] = c[j]+1
                else:
                    for j in range(m-i):
                        c[j] = -c[j]
            if (k:=prod(1+d for d in c)): yield k
    A325803_list = list(islice(A325803_gen(),20)) # Chai Wah Wu, Mar 03 2023

Formula

a(n) = A329893(A325804(n)). - Antti Karttunen, Dec 10 2019

Extensions

Comments and two formulas moved to A329893, which is an "uncompressed" version of this sequence. - Antti Karttunen, Dec 11 2019
Showing 1-10 of 25 results. Next