A004771 a(n) = 8*n + 7. Or, numbers whose binary expansion ends in 111.
7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 95, 103, 111, 119, 127, 135, 143, 151, 159, 167, 175, 183, 191, 199, 207, 215, 223, 231, 239, 247, 255, 263, 271, 279, 287, 295, 303, 311, 319, 327, 335, 343, 351, 359, 367, 375, 383, 391, 399, 407, 415, 423, 431
Offset: 0
References
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 246.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- Tanya Khovanova, Recursive Sequences
- Leo Tavares, Illustration: Twin Square Frames
- Leo Tavares, Illustration: Mid-line Hexagons
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 962
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
GAP
List([0..60],n->8*n+7); # Muniru A Asiru, Aug 28 2018
-
Haskell
a004771 = (+ 7) . (* 8) a004771_list = [7, 15 ..] -- Reinhard Zumkeller, Jan 29 2013
-
Magma
[8*n+7: n in [0..60]]; // Vincenzo Librandi, May 28 2011
-
Maple
A004771:=n->8*n+7; seq(A004771(n), n=0..100); # Wesley Ivan Hurt, Dec 22 2013
-
Mathematica
8 Range[0, 60] + 7 (* or *) Range[7, 500, 8] (* or *) Table[8 n + 7, {n, 0, 60}] (* Bruno Berselli, Dec 28 2016 *)
-
PARI
a(n)=8*n+7 \\ Charles R Greathouse IV, Sep 23 2012
Formula
O.g.f: (7 + x)/(1 - x)^2 = 8/(1 - x)^2 - 1/(1 - x). - R. J. Mathar, Nov 30 2007
a(n) = 2*a(n-1) - a(n-2) for n >= 2. - Vincenzo Librandi, May 28 2011
A056753(a(n)) = 7. - Reinhard Zumkeller, Aug 23 2009
a(n) = t(t(t(n))), where t(i) = 2*i + 1.
a(n) = A004767(2*n+1), for n >= 0. See also A004767(2*n) = A017101(n). - Wolfdieter Lang, Feb 03 2022
From Elmo R. Oliveira, Apr 11 2024: (Start)
E.g.f.: exp(x)*(7 + 8*x).
Comments