A005054 a(0) = 1; a(n) = 4*5^(n-1) for n >= 1.
1, 4, 20, 100, 500, 2500, 12500, 62500, 312500, 1562500, 7812500, 39062500, 195312500, 976562500, 4882812500, 24414062500, 122070312500, 610351562500, 3051757812500, 15258789062500, 76293945312500, 381469726562500, 1907348632812500, 9536743164062500
Offset: 0
References
- T. Koshy, "The Ends Of A Fermat Number", pp. 183-4 Journal Recreational Mathematics, vol. 31(3) 2002-3 Baywood NY.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 458.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- Judy Kramer and V. E. Hoggatt, Jr., Special Cases of Fibonacci Periodicity (Part 1, Part 2), The Fibonacci Quarterly, Vol. 10, No. 5 (1972), pp. 519-522, 530.
- Eric Weisstein's World of Mathematics, Fermat Number.
- Index entries for linear recurrences with constant coefficients, signature (5).
Crossrefs
Programs
-
Magma
[(4*5^n+0^n)/5: n in [0..30]]; // Vincenzo Librandi, Jun 08 2013
-
Maple
a:= n-> ceil(4*5^(n-1)): seq(a(n), n=0..30); # Alois P. Heinz, Jul 08 2022
-
Mathematica
CoefficientList[Series[(1 - x) / (1 - 5 x), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 08 2013 *)
-
PARI
Vec((1-x)/(1-5*x) + O(x^100)) \\ Altug Alkan, Dec 07 2015
Formula
a(n) = (4*5^n + 0^n) / 5. - R. J. Mathar, May 13 2008
G.f.: (1-x)/(1-5*x). - Philippe Deléham, Nov 02 2009
G.f.: 1/(1 - 4*Sum_{k>=1} x^k).
a(n) = 5*a(n-1) for n>=2. - Vincenzo Librandi, Dec 31 2010
E.g.f.: (4*exp(5*x)+1)/5. - Paul Barry, Apr 20 2003
a(n + 1) = (((1 + sqrt(-19))/2)^n + ((1 - sqrt(-19))/2)^n)^2 - (((1 + sqrt(-19))/2)^n - ((1 - sqrt(-19))/2)^n)^2. - Raphie Frank, Dec 07 2015
Extensions
Better definition from R. J. Mathar, May 13 2008
Edited by N. J. A. Sloane, Jul 08 2022
Comments