A005069 Sum of odd primes dividing n.
0, 0, 3, 0, 5, 3, 7, 0, 3, 5, 11, 3, 13, 7, 8, 0, 17, 3, 19, 5, 10, 11, 23, 3, 5, 13, 3, 7, 29, 8, 31, 0, 14, 17, 12, 3, 37, 19, 16, 5, 41, 10, 43, 11, 8, 23, 47, 3, 7, 5, 20, 13, 53, 3, 16, 7, 22, 29, 59, 8, 61, 31, 10, 0, 18, 14, 67, 17, 26, 12, 71, 3, 73, 37, 8, 19, 18, 16, 79
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
a = {0, 0}; For[n = 3, n < 80, n++, su = 0; b = FactorInteger[n]; For[i = 1, i < Length[b] + 1, i++, If[OddQ[b[[i, 1]]], su = su + b[[i, 1]]]]; AppendTo[a, su]]; a (* Stefan Steinerberger, Jun 02 2007 *) Array[DivisorSum[#, # &, And[PrimeQ@ #, OddQ@ #] &] &, 79] (* Michael De Vlieger, Jul 11 2017 *) Join[{0},Table[Total[FactorInteger[n][[All,1]]/.(2->0)],{n,2,100}]] (* Harvey P. Dale, Aug 28 2019 *)
-
PARI
a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k,1])%2) == 1, p)); \\ Michel Marcus, Jul 11 2017
-
Scheme
(define (A005069 n) (cond ((= 1 n) 0) ((even? n) (A005069 (/ n 2))) (else (+ (A020639 n) (A005069 (A028234 n)))))) ;; Antti Karttunen, Jul 10 2017
Formula
Additive with a(p^e) = 0 if p = 2, p otherwise.
G.f.: Sum_{k>=2} prime(k)*x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Dec 24 2016
From Antti Karttunen, Jul 10 & 11 2017: (Start)
(End)
Extensions
More terms from Stefan Steinerberger, Jun 02 2007
Comments