cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A005067 Sum of cubes of odd primes dividing n.

Original entry on oeis.org

0, 0, 27, 0, 125, 27, 343, 0, 27, 125, 1331, 27, 2197, 343, 152, 0, 4913, 27, 6859, 125, 370, 1331, 12167, 27, 125, 2197, 27, 343, 24389, 152, 29791, 0, 1358, 4913, 468, 27, 50653, 6859, 2224, 125, 68921, 370, 79507, 1331, 152, 12167, 103823, 27, 343, 125, 4940, 2197, 148877, 27, 1456, 343, 6886, 24389, 205379, 152
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

Additive with a(p^e) = 0 if p = 2, p^3 otherwise.
G.f.: Sum_{k>=2} prime(k)^3*x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Jan 06 2017
From Antti Karttunen, Jul 10 2017: (Start)
a(1) = 0; after which, for even n: a(n) = a(n/2), for odd n: a(n) = A020639(n)^3 + a(A028234(n)).
a(n) = A005064(A000265(n)).
(End)

Extensions

More terms from Antti Karttunen, Jul 10 2017

A005068 Sum of 4th powers of odd primes dividing n.

Original entry on oeis.org

0, 0, 81, 0, 625, 81, 2401, 0, 81, 625, 14641, 81, 28561, 2401, 706, 0, 83521, 81, 130321, 625, 2482, 14641, 279841, 81, 625, 28561, 81, 2401, 707281, 706, 923521, 0, 14722, 83521, 3026, 81, 1874161, 130321, 28642, 625, 2825761, 2482, 3418801, 14641, 706, 279841, 4879681, 81, 2401, 625, 83602, 28561, 7890481, 81
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, #^4 &, And[PrimeQ@ #, OddQ@ #] &] &, 54] (* Michael De Vlieger, Jul 11 2017 *)
    f[2, e_] := 0; f[p_, e_] := p^4; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 50] (* Amiram Eldar, Jun 20 2022 *)
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k,1])%2) == 1, p^4)); \\ Michel Marcus, Jul 11 2017
  • Scheme
    (define (A005068 n) (cond ((= 1 n) 0) ((even? n) (A005068 (/ n 2))) (else (+ (A000583 (A020639 n)) (A005068 (A028234 n)))))) ;; Antti Karttunen, Jul 10 2017
    

Formula

Additive with a(p^e) = 0 if p = 2, p^4 otherwise.
From Antti Karttunen, Jul 10 2017: (Start)
a(1) = 0; after which, for even n: a(n) = a(n/2), for odd n: a(n) = A020639(n)^4 + a(A028234(n)).
a(n) = A005065(A000265(n)).
(End)
G.f.: Sum_{k>=2} prime(k)^4 * x^prime(k) / (1 - x^prime(k)). - Ilya Gutkovskiy, Aug 19 2021

Extensions

More terms from Antti Karttunen, Jul 10 2017

A005066 Sum of squares of odd primes dividing n.

Original entry on oeis.org

0, 0, 9, 0, 25, 9, 49, 0, 9, 25, 121, 9, 169, 49, 34, 0, 289, 9, 361, 25, 58, 121, 529, 9, 25, 169, 9, 49, 841, 34, 961, 0, 130, 289, 74, 9, 1369, 361, 178, 25, 1681, 58, 1849, 121, 34, 529, 2209, 9, 49, 25, 298, 169, 2809, 9, 146, 49, 370, 841, 3481, 34, 3721, 961, 58, 0, 194, 130, 4489, 289, 538, 74, 5041, 9, 5329, 1369
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[Divisors[n],OddQ[#]&&PrimeQ[#]&]^2],{n,60}] (* Harvey P. Dale, May 02 2012 *)
    Array[DivisorSum[#, #^2 &, And[PrimeQ@ #, OddQ@ #] &] &, 74] (* Michael De Vlieger, Jul 11 2017 *)
    f[2, e_] := 0; f[p_, e_] := p^2; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 20 2022 *)
  • PARI
    a(n) = sumdiv(n, d, ((d%2) && isprime(d))*d^2); \\ Michel Marcus, Jan 04 2017
    
  • Python
    from sympy import primefactors
    def a(n): return sum(p**2 for p in primefactors(n) if p % 2)
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 11 2017
  • Scheme
    (define (A005066 n) (cond ((= 1 n) 0) ((even? n) (A005066 (/ n 2))) (else (+ (A000290 (A020639 n)) (A005066 (A028234 n)))))) ;; Antti Karttunen, Jul 10 2017
    

Formula

Additive with a(p^e) = 0 if p = 2, p^2 otherwise.
G.f.: Sum_{k>=2} prime(k)^2*x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Jan 04 2017
From Antti Karttunen, Jul 10 & 11 2017: (Start)
a(1) = 0; after which, for even n: a(n) = a(n/2), for odd n: a(n) = A020639(n)^2 + a(A028234(n)).
a(n) = A005063(A000265(n)).
a(n) = A005079(n) + A005083(n).
(End)

Extensions

More terms from Antti Karttunen, Jul 10 2017

A005078 Sum of primes = 1 mod 4 dividing n.

Original entry on oeis.org

0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0, 13, 0, 5, 0, 17, 0, 0, 5, 0, 0, 0, 0, 5, 13, 0, 0, 29, 5, 0, 0, 0, 17, 5, 0, 37, 0, 13, 5, 41, 0, 0, 0, 5, 0, 0, 0, 0, 5, 17, 13, 53, 0, 5, 0, 0, 29, 0, 5, 61, 0, 0, 0, 18, 0, 0, 17, 0, 5, 0, 0, 73, 37, 5, 0, 0, 13, 0, 5, 0, 41, 0, 0, 22, 0, 29, 0, 89, 5, 13, 0, 0, 0, 5, 0, 97, 0, 0, 5, 101
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

Additive with a(p^e) = p if p = 1 (mod 4), 0 otherwise.
a(n) = A008472(n) - A005082(n) - 2*A059841(n). - Antti Karttunen, Jul 11 2017

Extensions

More terms from Antti Karttunen, Jul 11 2017

A005082 Sum of primes = 3 mod 4 dividing n.

Original entry on oeis.org

0, 0, 3, 0, 0, 3, 7, 0, 3, 0, 11, 3, 0, 7, 3, 0, 0, 3, 19, 0, 10, 11, 23, 3, 0, 0, 3, 7, 0, 3, 31, 0, 14, 0, 7, 3, 0, 19, 3, 0, 0, 10, 43, 11, 3, 23, 47, 3, 7, 0, 3, 0, 0, 3, 11, 7, 22, 0, 59, 3, 0, 31, 10, 0, 0, 14, 67, 0, 26, 7, 71, 3, 0, 0, 3, 19, 18, 3, 79, 0, 3, 0, 83, 10, 0, 43, 3, 11, 0, 3, 7, 23, 34, 47, 19, 3, 0, 7, 14, 0, 0, 3, 103
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

Additive with a(p^e) = p if p = 3 (mod 4), 0 otherwise.
From Antti Karttunen, Jul 11 2017: (Start)
a(1) = 0; for n > 1, a(n) = (A079978(A020639(n) mod 4)*A020639(n)) + a(A028234(n)).
a(n) = A008472(n) - A005078(n) - 2*A059841(n).
(End)

Extensions

More terms from Antti Karttunen, Jul 11 2017

A279051 Sum of odd nonprime divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 16, 1, 1, 10, 1, 1, 22, 1, 1, 1, 26, 1, 37, 1, 1, 16, 1, 1, 34, 1, 36, 10, 1, 1, 40, 1, 1, 22, 1, 1, 70, 1, 1, 1, 50, 26, 52, 1, 1, 37, 56, 1, 58, 1, 1, 16, 1, 1, 94, 1, 66, 34, 1, 1, 70, 36, 1, 10, 1, 1, 116, 1, 78, 40, 1, 1, 118, 1, 1, 22, 86, 1, 88, 1, 1, 70, 92, 1, 94, 1, 96, 1, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 17 2017

Keywords

Examples

			a(9) = 10 because 9 has 3 divisors {1, 3, 9} among which 2 are odd nonprime {1, 9} therefore 1 + 9 = 10.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add(`if`(d::even or d::prime, 0, d), d=divisors(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 18 2017
  • Mathematica
    Table[DivisorSum[n, #1 &, Mod[#1, 2] == 1 && ! PrimeQ[#1] &], {n, 97}]
    nmax = 97; Rest[CoefficientList[Series[Sum[k x^k/(1 + x^k), {k, 1, nmax}] - Sum[Prime[k] x^Prime[k]/(1 - x^Prime[k]), {k, 2, nmax}], {x, 0, nmax}], x]]
  • PARI
    a(n) = sumdiv(n, d, !isprime(d)*(d%2)*d); \\ Michel Marcus, Sep 18 2017

Formula

G.f.: A(x) = B(x) - C(x), where B(x) = Sum_{k>=1} k*x^k/(1 + x^k), C(x) = Sum_{k>=2} prime(k)*x^prime(k)/(1 - x^prime(k)).
a(n) = Sum_{d|n, d odd nonprime} d.
a(A093641(n)) = 1.

A279910 a(n) = Sum_{k=1..n} prime(k+1)*floor(n/prime(k+1)).

Original entry on oeis.org

0, 0, 3, 3, 8, 11, 18, 18, 21, 26, 37, 40, 53, 60, 68, 68, 85, 88, 107, 112, 122, 133, 156, 159, 164, 177, 180, 187, 216, 224, 255, 255, 269, 286, 298, 301, 338, 357, 373, 378, 419, 429, 472, 483, 491, 514, 561, 564, 571, 576, 596, 609, 662, 665, 681, 688, 710, 739, 798, 806, 867, 898, 908, 908, 926, 940, 1007, 1024, 1050, 1062
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 24 2016

Keywords

Comments

Sum of all odd prime divisors of all positive integers <= n.

Examples

			For n = 7 the odd prime divisors of the first seven positive integers are {0}, {0}, {3}, {0}, {5}, {3}, {7} so a(7) = 0 + 0 + 3 + 0 + 5 + 3 + 7 = 18.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Prime[k + 1] Floor[n/Prime[k + 1]], {k, 1, n}], {n, 70}]
    Rest[nmax = 70; CoefficientList[Series[(1/(1 - x)) Sum[Prime[k] x^Prime[k]/(1 - x^Prime[k]), {k, 2, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: (1/(1 - x))*Sum_{k>=2} prime(k)*x^prime(k)/(1 - x^prime(k)).
a(n) = -2*floor(n/2) + Sum_{k=1..n} prime(k)*floor(n/prime(k)) .
a(n) = A024924(n) - A052928(n).

A284233 Sum of odd prime power divisors of n (not including 1).

Original entry on oeis.org

0, 0, 3, 0, 5, 3, 7, 0, 12, 5, 11, 3, 13, 7, 8, 0, 17, 12, 19, 5, 10, 11, 23, 3, 30, 13, 39, 7, 29, 8, 31, 0, 14, 17, 12, 12, 37, 19, 16, 5, 41, 10, 43, 11, 17, 23, 47, 3, 56, 30, 20, 13, 53, 39, 16, 7, 22, 29, 59, 8, 61, 31, 19, 0, 18, 14, 67, 17, 26, 12, 71, 12, 73, 37, 33, 19, 18, 16, 79, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 23 2017

Keywords

Examples

			a(15) = 8 because 15 has 4 divisors {1, 3, 5, 15} among which 2 are odd prime powers {3, 5} therefore 3 + 5 = 8.
		

Crossrefs

Cf. A000961, A005069, A023888, A023889, A038712, A061345, A065091 (fixed points), A087436 (number of odd prime power divisors of n), A206787, A246655, A284117.

Programs

  • Mathematica
    nmax = 80; Rest[CoefficientList[Series[Sum[Boole[PrimePowerQ[k] && Mod[k, 2] == 1] k x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Total[Select[Divisors[n], PrimePowerQ[#] && Mod[#, 2] == 1 &]], {n, 80}]
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; f[2, e_] := 0; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)

Formula

G.f.: Sum_{k>=1} A061345(k)*x^A061345(k)/(1 - x^A061345(k)).
a(n) = Sum_{d|n, d = p^k, p prime, p > 2, k > 0} d.
a(p^k) = p*(p^k - 1)/(p - 1) for p is a prime > 2.
a(2^k*p) = p for p is a prime > 2.
a(2^k) = 0.
Additive with a(2^e) = 0, and a(p^e) = (p^(e+1)-1)/(p-1) - 1 for an odd prime p. - Amiram Eldar, Jul 24 2024

A281905 Expansion of Sum_{i>=2} prime(i)*x^prime(i)/(1 - x^prime(i)) / Product_{j>=1} (1 - x^j).

Original entry on oeis.org

0, 0, 3, 3, 11, 17, 35, 49, 84, 124, 199, 280, 426, 594, 858, 1172, 1654, 2224, 3061, 4066, 5472, 7196, 9543, 12391, 16196, 20857, 26921, 34351, 43924, 55574, 70419, 88455, 111142, 138697, 173025, 214527, 265895, 327831, 403825, 495234, 606755, 740371, 902507, 1096215, 1329912, 1608445, 1942926, 2340203
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 01 2017

Keywords

Comments

Total sum of odd prime parts in all partitions of n.
Convolution of the sequences A000041 and A005069.

Examples

			a(5) = 11 because we have [5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1] and 5 + 3 + 3 = 11.
		

Crossrefs

Programs

  • Mathematica
    nmax = 48; Rest[CoefficientList[Series[Sum[Prime[i] x^Prime[i]/(1 - x^Prime[i]), {i, 2, nmax}]/Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{i>=2} prime(i)*x^prime(i)/(1 - x^prime(i)) / Product_{j>=1} (1 - x^j).

A338490 Sum of indices of distinct odd prime factors of n.

Original entry on oeis.org

0, 0, 2, 0, 3, 2, 4, 0, 2, 3, 5, 2, 6, 4, 5, 0, 7, 2, 8, 3, 6, 5, 9, 2, 3, 6, 2, 4, 10, 5, 11, 0, 7, 7, 7, 2, 12, 8, 8, 3, 13, 6, 14, 5, 5, 9, 15, 2, 4, 3, 9, 6, 16, 2, 8, 4, 10, 10, 17, 5, 18, 11, 6, 0, 9, 7, 19, 7, 11, 7, 20, 2, 21, 12, 5, 8, 9, 8, 22, 3, 2, 13, 23, 6, 10, 14, 12, 5, 24, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 09 2020

Keywords

Examples

			a(60) = a(2^2 * 3 * 5) = a(prime(1)^2 * prime(2) * prime(3)) = 2 + 3 = 5.
		

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[k x^Prime[k]/(1 - x^Prime[k]), {k, 2, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = vecsum(apply(primepi, (factor(n >> valuation(n, 2))[, 1]))); \\ Michel Marcus, Nov 10 2020

Formula

G.f.: Sum_{k>=2} k * x^prime(k) / (1 - x^prime(k)).
a(n) = Sum_{p|n, p odd prime} A000720(p).
a(n) = A066328(A000265(n)).
Showing 1-10 of 10 results.