cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A139487 Numbers k such that 8k + 7 is prime.

Original entry on oeis.org

0, 2, 3, 5, 8, 9, 12, 15, 18, 20, 23, 24, 27, 29, 32, 33, 38, 44, 45, 47, 53, 54, 57, 59, 60, 62, 74, 75, 78, 80, 89, 90, 92, 93, 102, 104, 107, 110, 113, 114, 120, 122, 123, 128, 129, 132, 135, 137, 143, 152, 153, 159, 162, 164, 165, 170, 174, 177, 179, 180, 183, 185
Offset: 1

Views

Author

Artur Jasinski, Apr 23 2008

Keywords

Comments

For numbers k such that:
8k+1 is prime see A005123, primes see A007519;
8k+3 is prime see A005124, primes see A007520;
8k+5 is prime see A105133, primes see A007521;
8k+7 is prime see A139487, primes see A007522.
8k + 7 divides A000225(4k+3). - Jinyuan Wang, Mar 08 2019

Crossrefs

Programs

  • Magma
    [n: n in [0..200] | IsPrime(8*n+7)]; // Vincenzo Librandi, Jun 25 2014
    
  • Mathematica
    a = {}; Do[If[PrimeQ[8 n + 7], AppendTo[a, n]], {n, 0, 300}]; a
    Select[Range[0,200],PrimeQ[8#+7]&] (* Harvey P. Dale, Oct 10 2012 *)
  • PARI
    is(n)=isprime(8*n+7) \\ Charles R Greathouse IV, Feb 17 2017

Formula

a(n) = (A007522(n) - 7)/8, n >= 1.

A023229 Primes p such that 8*p + 3 is also prime.

Original entry on oeis.org

2, 5, 7, 13, 17, 31, 41, 43, 47, 61, 71, 73, 101, 103, 107, 113, 127, 131, 157, 163, 181, 191, 197, 223, 233, 241, 251, 281, 283, 293, 307, 317, 337, 367, 383, 421, 433, 443, 457, 461, 467, 491, 503, 563, 631, 643, 647, 653, 673, 677, 691, 733, 751, 761, 787, 797, 811
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n: n in PrimesUpTo(1000) | IsPrime(8*n+3)]; // Vincenzo Librandi, Nov 20 2010
  • Maple
    a := proc (n) if isprime(n) = true and isprime(8*n+3) = true then n else end if end proc: seq(a(n), n = 1 .. 900); # Emeric Deutsch, Dec 26 2008
  • Mathematica
    Select[Prime@Range@500, PrimeQ[8 # + 3] &] (* Vincenzo Librandi, May 19 2014 *)

A023261 Primes that remain prime through 2 iterations of function f(x) = 8x + 3.

Original entry on oeis.org

5, 13, 31, 61, 101, 103, 163, 191, 233, 241, 251, 433, 461, 643, 751, 761, 821, 863, 983, 1021, 1153, 1193, 1283, 1291, 1531, 1543, 1861, 2281, 2543, 2903, 2953, 3271, 3373, 3673, 3701, 3733, 3793, 3923, 4003, 4241, 4283, 4751, 5333, 5581, 5711, 5801, 5813
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 8*p+3 and 64*p+27 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A005124, A023229. - John Cerkan, Sep 14 2016

Programs

  • Magma
    [n: n in [1..100000] | IsPrime(n) and IsPrime(8*n+3) and IsPrime(64*n+27)] // Vincenzo Librandi, Aug 04 2010
  • Mathematica
    Select[Prime[Range[800]],AllTrue[Rest[NestList[8#+3&,#,2]],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 12 2017 *)

Formula

a(n) = 1 or 3 (mod 10) for n > 1. - John Cerkan, Sep 14 2016

A023348 Primes that remain prime through 5 iterations of function f(x) = 8x + 3.

Original entry on oeis.org

774791, 924731, 4593221, 5181641, 9905521, 11523361, 11755831, 12253321, 14078711, 14545331, 14928791, 18523361, 18686531, 24169001, 25614361, 26221051, 26834461, 30970201, 33446521, 40051021, 42888191, 43703201, 47528561, 48653951
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 8*p+3, 64*p+27, 512*p+219, 4096*p+1755 and 32768*p+14043 are also primes. - Vincenzo Librandi, Aug 05 2010

Crossrefs

Subsequence of A005124, A023229, A023261, A023292, and A023320.

Programs

  • Magma
    [n: n in [1..19000000] | IsPrime(n) and IsPrime(8*n+3) and IsPrime(64*n+27) and IsPrime(512*n+219) and IsPrime(4096*n+1755) and IsPrime(32768*n+14043)] // Vincenzo Librandi, Aug 05 2010
  • Mathematica
    n5Q[n_]:=And@@PrimeQ/@NestList[8#+3&,n,5]; Select[Prime[Range[ 3000000]], n5Q] (* Harvey P. Dale, Sep 03 2013 *)

Formula

a(n) == 31 (mod 70). - John Cerkan, Nov 04 2016

A123978 Numbers k for which 8*k+1, 8*k+3 and 8*k+7 are primes.

Original entry on oeis.org

2, 5, 80, 107, 110, 185, 260, 332, 500, 1067, 1307, 1472, 1625, 1760, 1790, 1955, 2255, 2612, 2627, 2672, 2882, 2945, 3197, 3335, 3467, 3965, 4007, 4037, 4040, 4202, 4355, 4880, 5147, 5252, 5525, 6242, 6812, 6917, 6977, 7430, 7787, 8192, 8612, 8657, 8720
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^4], And @@ PrimeQ /@ ({1, 3, 7} + 8#) &] (* Ray Chandler, Nov 05 2006 *)

Extensions

Extended by Ray Chandler, Nov 05 2006

A123980 Numbers k for which 8*k+1, 8*k+5 and 8*k+7 are primes.

Original entry on oeis.org

12, 24, 57, 162, 234, 249, 267, 297, 432, 519, 564, 717, 969, 984, 1167, 1179, 1389, 1734, 2007, 2364, 2427, 2544, 2664, 2769, 2784, 3582, 3627, 3819, 3897, 4089, 4287, 5244, 5307, 5337, 5472, 5577, 5667, 5727, 5967, 6084, 6102, 6399, 6522, 6822, 6987
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[7000], And @@ PrimeQ /@ ({1, 5, 7} + 8#) &] (* Ray Chandler, Nov 05 2006 *)

Extensions

Extended by Ray Chandler, Nov 05 2006

A123983 Numbers k for which 8*k+1, 8*k+5, 8*k+7 and 8*k+11 are primes.

Original entry on oeis.org

12, 57, 162, 249, 432, 564, 984, 1734, 2007, 2427, 2664, 2784, 3627, 5307, 5472, 5727, 6399, 7614, 11082, 11547, 11607, 11694, 14127, 14274, 14484, 14862, 15117, 17049, 19104, 19422, 20577, 25677, 27612, 27714, 28152, 29307, 32232, 34602, 35592
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2006

Keywords

Crossrefs

Programs

  • Maple
    isA123983 := proc(n) RETURN( isprime(8*n+1) and isprime(8*n+5) and isprime(8*n+7) and isprime(8*n+11) ) ; end: for n from 1 to 7000 do if isA123983(n) then printf("%d,",n) ; fi ; od ; # R. J. Mathar, Nov 06 2006
  • Mathematica
    Select[Range[37000], And @@ PrimeQ /@ ({1, 5, 7, 11} + 8#) &] (* Ray Chandler, Nov 05 2006 *)

Extensions

Edited and extended by Ray Chandler and R. J. Mathar, Nov 05 2006

A153236 Numbers n such that 8*n + 3 is not prime.

Original entry on oeis.org

3, 4, 6, 9, 11, 12, 14, 15, 18, 19, 21, 23, 24, 25, 27, 29, 30, 32, 33, 34, 36, 37, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 53, 54, 56, 57, 59, 60, 63, 64, 66, 67, 69, 72, 74, 75, 76, 78, 79, 81, 83, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97
Offset: 1

Views

Author

Vincenzo Librandi, Dec 21 2008

Keywords

Examples

			Distribution of the terms in the following triangular array:
*;
*,*;
*,4,*;
3,*,*,*;
*,*,*,12,*;
*,*,11,*,*,*;
*,9,*,*,*,24,*;
6,*,*,*,23,*,*,*;
*,*,*,21,*,*,*,40,*;
*,*,18,*,*,*,39,*,*,*;
*,14,*,*,*,37,*,*,*,60,*;
9,*,*,*,34,*,*,*,59,*,*,*; etc.
where * marks the non-integer values of (2*h*k + k + h - 1)/4 with h >= k >= 1. - _Vincenzo Librandi_, Jan 15 2013
		

Crossrefs

Programs

  • Magma
    [n: n in [0..110] | not IsPrime(8*n+3)]; // Vincenzo Librandi, Jan 12 2013
  • Mathematica
    Select[Range[0, 200], !PrimeQ[8 # + 3] &] (* Vincenzo Librandi, Jan 12 2013 *)

A199427 Numbers n such that 4n+1 and 8n+3 are prime.

Original entry on oeis.org

1, 7, 10, 13, 22, 28, 43, 58, 70, 73, 127, 148, 160, 163, 190, 202, 238, 253, 262, 307, 322, 352, 370, 400, 433, 472, 475, 493, 517, 532, 535, 568, 598, 637, 673, 685, 688, 742, 832, 847, 853, 862, 898, 940, 955, 1018, 1087, 1093, 1102, 1120, 1183, 1198, 1270
Offset: 1

Views

Author

Martin Renner, Nov 06 2011

Keywords

Comments

According to Beiler: the integer 2 is a primitive root of all primes of the form 8n+3 provided 4n+1 is a prime.

Examples

			For n = 1, both 11 and 5 are primes, hence 2 is a primitive root of 11.
		

References

  • Albert H. Beiler: Recreations in the theory of numbers. New York: Dover, (2nd ed.) 1966, p. 102, nr. 4.

Crossrefs

Programs

  • Mathematica
    Select[Range[1270], PrimeQ[4*# + 1] && PrimeQ[8*# + 3] &] (* T. D. Noe, Nov 07 2011 *)

Formula

a(n) = intersection(A005098, A005124).
Showing 1-9 of 9 results.