cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005286 a(n) = (n + 3)*(n^2 + 6*n + 2)/6.

Original entry on oeis.org

1, 6, 15, 29, 49, 76, 111, 155, 209, 274, 351, 441, 545, 664, 799, 951, 1121, 1310, 1519, 1749, 2001, 2276, 2575, 2899, 3249, 3626, 4031, 4465, 4929, 5424, 5951, 6511, 7105, 7734, 8399, 9101, 9841, 10620, 11439, 12299, 13201, 14146, 15135, 16169, 17249
Offset: 0

Views

Author

Keywords

Comments

Number of permutations of [n+3] with three inversions. - Michael Somos, Jun 25 2002
This sequence is related to A241765 by A241765(n) = n*a(n) - Sum_{i=0..n-1} a(i), with A241765(0)=0. For example: A241765(4) = 4*49 - (29+15+6+1) = 145. - Bruno Berselli, Apr 29 2014
For n >= 2, a(n) is also the number of multiplications between two nonzero matrix elements involved in calculating the product of an (n+1) X (n+1) Hessenberg matrix and an (n+1) X (n+1) upper triangular matrix. The formula for n X n matrices is (n+2)(n^2+4n-3)/6 multiplications, n >= 3. - John M. Coffey, Jul 18 2016

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 255, #2, b(n,3).
  • R. K. Guy, personal communication.
  • E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see Exercise 1.30, p. 49.

Crossrefs

Programs

  • Mathematica
    Table[(n + 3) (n^2 + 6*n + 2)/6, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 16 2011 *)
    LinearRecurrence[{4,-6,4,-1},{1,6,15,29},50] (* Harvey P. Dale, Mar 07 2012 *)
    Table[Binomial[n, 3] + Binomial[n, 2] - n, {n, 3, 47}] (* or *)
    CoefficientList[Series[(1 + 2 x - 3 x^2 + x^3)/(1 - x)^4, {x, 0, 44}], x] (* Michael De Vlieger, Jul 09 2016 *)
  • PARI
    a(n)=n+=3; (n^3-7*n)/6 /* Michael Somos, May 12 2005 */

Formula

G.f.: (1+2*x-3*x^2+x^3)/(1-x)^4. - Simon Plouffe in his 1992 dissertation
a(-6-n) = -a(n). - Michael Somos, May 12 2005
a(n) = a(n-1) + A000096(n+1) = A005581(n+2) - 1. - Henry Bottomley, Oct 25 2001
(m^3-7*m)/6 for m >= 3 gives the same sequence. - N. J. A. Sloane, Jul 15 2011
a(0)=1, a(1)=6, a(2)=15, a(3)=29, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Mar 07 2012
E.g.f.: (6 + 30*x + 12*x^2 + x^3)*exp(x)/6. - Ilya Gutkovskiy, Jul 09 2016