cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005320 a(n) = 4*a(n-1) - a(n-2), with a(0) = 0, a(1) = 3.

Original entry on oeis.org

0, 3, 12, 45, 168, 627, 2340, 8733, 32592, 121635, 453948, 1694157, 6322680, 23596563, 88063572, 328657725, 1226567328, 4577611587, 17083879020, 63757904493, 237947738952, 888033051315, 3314184466308, 12368704813917, 46160634789360, 172273834343523, 642934702584732, 2399464975995405, 8954925201396888, 33420235829592147
Offset: 0

Views

Author

Keywords

Comments

For n > 1, a(n-1) is the determinant of the n X n band matrix which has {2,4,4,...,4,4,2} on the diagonal and a 1 on the entire super- and subdiagonal. This matrix appears when constructing a natural cubic spline interpolating n equally spaced data points. - g.degroot(AT)phys.uu.nl, Feb 14 2007
Integer values of x that make 9+3*x^2 a perfect square. - Lorenz H. Menke, Jr., Mar 26 2008
The intermediate convergents to 3^(1/2), beginning with 3/2, 12/7, 45/26, 168/97, comprise a strictly increasing sequence whose numerators are the terms of this sequence and denominators are A001075. - Clark Kimberling, Aug 27 2008
a(n) also give the altitude to the middle side of a Super-Heronian Triangle. - Johannes Boot, Oct 14 2010
a(n) gives values of y satisfying 3*x^2 - 4*y^2 = 12; corresponding x values are given by A003500. - Sture Sjöstedt, Dec 19 2017

References

  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [3*Evaluate(ChebyshevSecond(n), 2): n in [0..40]]; // G. C. Greubel, Oct 10 2022
    
  • Maple
    A005320:=3*z/(1-4*z+z**2); # Simon Plouffe in his 1992 dissertation
    a:= n-> (Matrix([[3,0]]). Matrix([[4,1],[ -1,0]])^n)[1,2]: seq(a(n), n=0..50); # Alois P. Heinz, Aug 14 2008
  • Mathematica
    LinearRecurrence[{4,-1},{0,3},40] (* Harvey P. Dale, Mar 04 2012 *)
  • PARI
    Vec(3/(x^2-4*x+1)+O(x^99)) \\ Charles R Greathouse IV, Mar 05 2012
    
  • SageMath
    [3*chebyshev_U(n-1,2) for n in range(41)] # G. C. Greubel, Oct 10 2022

Formula

a(n) = (sqrt(3)/2)*( (2+sqrt(3))^n - (2-sqrt(3))^n ). - Antonio Alberto Olivares, Jan 17 2004
G.f.: 3*x/(1-4*x+x^2). - Harvey P. Dale, Mar 04 2012
a(n) = 3*A001353(n). - R. J. Mathar, Mar 14 2016

Extensions

Typo in definition corrected by Johannes Boot, Feb 05 2009