A005361 Product of exponents of prime factorization of n.
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 10000 terms from T. D. Noe)
- Imanuel Chen and Michael Z. Spivey, Integral Generalized Binomial Coefficients of Multiplicative Functions, Preprint 2015; Summer Research Paper 238, Univ. Puget Sound.
- P. Erdős and T. Motzkin, Problem 5735, Amer. Math. Monthly, 78 (1971), 680-681. (Incorrect solution!)
- Vaclav Kotesovec, Graph - the asymptotic ratio (100000 terms)
- J. Knopfmacher, A prime-divisor function, Proc. Amer. Math. Soc., 40 (1973), 373-377.
- MathStackExchange, Dirichlet series for zeta(s)*zeta(2*s)*zeta(3*s)*zeta(6*s)^(-1).
- H. N. Shapiro, Problem 5735, Amer. Math. Monthly, 97 (1990), 937.
- D. Suryanarayana and R. Sitaramachandra Rao, The number of square-full divisors of an integer, Proc. Amer. Math. Soc., Vol. 34, No. 1 (1972), pp. 79-80.
- Index entries for sequences computed from exponents in factorization of n
Crossrefs
Programs
-
Haskell
a005361 = product . a124010_row -- Reinhard Zumkeller, Jan 09 2012
-
Maple
A005361 := proc(n) local a, p ; a := 1 ; for p in ifactors(n)[2] do a := a*op(2, p) ; end do: a ; end proc: seq(A005361(n),n=1..30) ; # R. J. Mathar, Nov 20 2012 # second Maple program: a:= n-> mul(i[2], i=ifactors(n)[2]): seq(a(n), n=1..80); # Alois P. Heinz, Feb 18 2020
-
Mathematica
Prepend[ Array[ Times @@ Last[ Transpose[ FactorInteger[ # ] ] ]&, 100, 2 ], 1 ] Array[Times@@Transpose[FactorInteger[#]][[2]]&,80] (* Harvey P. Dale, Aug 15 2012 *)
-
PARI
for(n=1,100, f=factor(n); print1(prod(i=1,omega(f), f[i,2]),",")) \\ edited by M. F. Hasler, Feb 18 2020
-
PARI
a(n)=factorback(factor(n)[,2]) \\ Charles R Greathouse IV, Nov 07 2014
-
PARI
for(n=1, 100, print1(direuler(p=2, n, (1 - X + X^2)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020
-
Python
from math import prod from sympy import factorint def a(n): return prod(factorint(n).values()) print([a(n) for n in range(1, 91)]) # Michael S. Branicky, Jul 04 2022
-
Scheme
(define (A005361 n) (if (= 1 n) 1 (* (A067029 n) (A005361 (A028234 n))))) ;; Antti Karttunen, Mar 06 2017
Formula
n = Product (p_j^k_j) -> a(n) = Product (k_j).
Dirichlet g.f.: zeta(s)*zeta(2s)*zeta(3s)/zeta(6s).
Multiplicative with a(p^e) = e. - David W. Wilson, Aug 01 2001
a(n) = Sum_{d dividing n} floor(rad(d)/rad(n)) where rad(n) is A007947. - Enrique Pérez Herrero, Nov 06 2009
a(n) = Sum_{k=1..n}(floor(cos^2(Pi*k^n/n))*floor(cos^2(Pi*n/k))). - Anthony Browne, May 11 2016
From Antti Karttunen, Mar 06 2017: (Start)
(End)
Let (b(n)) be multiplicative with b(p^e) = -1 + ( (floor((e-1)/3)+floor(e/3)) mod 4 ) for p prime and e > 0, then b(n) is the Dirichlet inverse of (a(n)). - Werner Schulte, Feb 23 2018
Sum_{i=1..k} a(i) ~ (zeta(2)*zeta(3)/zeta(6)) * k (Suryanarayana and Sitaramachandra Rao, 1972). - Amiram Eldar, Apr 13 2020
More precise asymptotics: Sum_{k=1..n} a(k) ~ 315*zeta(3)*n / (2*Pi^4) + zeta(1/2)*zeta(3/2)*sqrt(n) / zeta(3) + 6*zeta(1/3)*zeta(2/3)*n^(1/3) / Pi^2 [Knopfmacher, 1973]. - Vaclav Kotesovec, Jun 13 2020
Comments