cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 170 results. Next

A005934 Highly powerful numbers: numbers with record value of the product of the exponents in prime factorization (A005361).

Original entry on oeis.org

1, 4, 8, 16, 32, 64, 128, 144, 216, 288, 432, 864, 1296, 1728, 2592, 3456, 5184, 7776, 10368, 15552, 20736, 31104, 41472, 62208, 86400, 108000, 129600, 194400, 216000, 259200, 324000, 432000, 518400, 648000, 972000, 1296000, 1944000, 2592000
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a = {1}; b = {1}; f[n_] := Times @@ Last /@ FactorInteger[n]; Do[If[f@ n > Max[b], And[AppendTo[b, f@ n], AppendTo[a, n]]], {n, 1000000}]; a (* Michael De Vlieger, Aug 28 2015 *)
    With[{s = Array[Times @@ FactorInteger[#][[All, -1]] &, 3*10^6]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Oct 15 2017 *)
    DeleteDuplicates[Table[{n,Times@@FactorInteger[n][[All,2]]},{n,26*10^5}],GreaterEqual[#1[[2]],#2[[2]]]&][[All,1]] (* Harvey P. Dale, May 13 2022 *)
  • PARI
    {prdex(n)=local(s,fac); s=1; fac=factor(n); for(k=1,matsize(fac)[1],s=s*fac[k,2]); return(s)} {hp(m)=local(rec); rec=0; for(n=1,m,if(prdex(n)>rec,rec=prdex(n); print1(n",")))}

Formula

For n = Product p_i^e_i, let b(n) = Product e_i; then n is highly powerful if b(n) sets a new record.

Extensions

Hardy and Subbarao give an extensive table.
Corrected and extended by Jason Earls, Jul 10 2003

A322327 a(n) = A005361(n) * A034444(n).

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 6, 4, 4, 2, 8, 2, 4, 4, 8, 2, 8, 2, 8, 4, 4, 2, 12, 4, 4, 6, 8, 2, 8, 2, 10, 4, 4, 4, 16, 2, 4, 4, 12, 2, 8, 2, 8, 8, 4, 2, 16, 4, 8, 4, 8, 2, 12, 4, 12, 4, 4, 2, 16, 2, 4, 8, 12, 4, 8, 2, 8, 4, 8, 2, 24, 2, 4, 8, 8, 4, 8, 2, 16, 8, 4, 2, 16, 4, 4, 4, 12, 2, 16, 4, 8, 4, 4, 4, 20, 2, 8, 8, 16
Offset: 1

Views

Author

Werner Schulte, Dec 03 2018

Keywords

Comments

Conjecture: Let k be some fixed integer and a_k(n) = A005361(n) * k^A001221(n) for n > 0 with 0^0 = 1. Then a_k(n) is multiplicative with a_k(p^e) = k*e for prime p and e > 0. For k = 0 see A000007 (offset 1), for k = 1 see A005361, for k = 2 see this sequence, for k = 3 see A226602 (offset 1), and for k = 4 see A322328.
Dirichlet inverse b(n) [= A355837(n)] is multiplicative with b(p^e) = 2 * (e mod 2) * (-1)^((e+1)/2) for prime p and e > 0.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n==1, 1, Module[{f = FactorInteger[n]}, 2^Length[f] * Times@@f[[;;,2]]]]; Array[a, 100] (* Amiram Eldar, Dec 03 2018 *)
  • PARI
    a(n) = my(f=factor(n)); vecprod(f[,2])*2^omega(n); \\ Michel Marcus, Dec 04 2018
    
  • PARI
    A322327(n) = factorback(apply(e -> e+e, factor(n)[, 2])); \\ Antti Karttunen, Jul 18 2022
    
  • Python
    from math import prod
    from sympy import factorint
    def A322327(n): return prod(e<<1 for e in factorint(n).values()) # Chai Wah Wu, Dec 26 2022

Formula

Multiplicative with a(p^e) = 2*e for prime p and e > 0.
Dirichlet g. f.: (zeta(s))^2 * zeta(2*s) / zeta(4*s).
Equals Dirichlet convolution of A000005 and A227291.
Sum_{k=1..n} a(k) ~ 15*(log(n) + 2*gamma - 1 + 12*zeta'(2)/Pi^2 - 360*zeta'(4)/Pi^4) * n / Pi^2 + 6*zeta(1/2)^2 * sqrt(n) / Pi^2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 20 2020
a(n) = A005361(n^2) = A286324(n^2). - Amiram Eldar, Dec 09 2023

Extensions

Data section extended up to a(100) by Antti Karttunen, Jul 18 2022

A284001 a(n) = A005361(A283477(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 4, 6, 1, 2, 4, 6, 8, 12, 18, 24, 1, 2, 4, 6, 8, 12, 18, 24, 16, 24, 36, 48, 54, 72, 96, 120, 1, 2, 4, 6, 8, 12, 18, 24, 16, 24, 36, 48, 54, 72, 96, 120, 32, 48, 72, 96, 108, 144, 192, 240, 162, 216, 288, 360, 384, 480, 600, 720, 1, 2, 4, 6, 8, 12, 18, 24, 16, 24, 36, 48, 54, 72, 96, 120, 32, 48, 72, 96, 108, 144, 192, 240, 162, 216, 288, 360, 384, 480
Offset: 0

Views

Author

Antti Karttunen, Mar 18 2017

Keywords

Comments

a(n) is the product of elements of the multiset that covers an initial interval of positive integers with multiplicities equal to the parts of the n-th composition in standard order (graded reverse-lexicographic, A066099). This composition is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. For example, the 13th composition is (1,2,1) giving the multiset {1,2,2,3} with product 12, so a(13) = 12. - Gus Wiseman, Apr 26 2020

Crossrefs

Row products of A095684.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Weighted sum is A029931.
- Necklaces are A065609.
- Sum is A070939.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon words are A275692.
- Distinct parts are counted by A334028.

Programs

  • Mathematica
    Table[Times @@ FactorInteger[#][[All, -1]] &[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}] &[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2]]], {n, 0, 93}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    A005361(n) = factorback(factor(n)[, 2]); \\ From A005361
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A283477(n) = A108951(A019565(n));
    A284001(n) = A005361(A283477(n));
    
  • Scheme
    (define (A284001 n) (A005361 (A283477 n)))

Formula

a(n) = A005361(A283477(n)).
a(n) = A003963(A057335(n)). - Gus Wiseman, Apr 26 2020
a(n) = A284005(A053645(n)) for n > 0 with a(0) = 1. - Mikhail Kurkov, Jun 05 2021 [verification needed]

A322328 a(n) = A005361(n) * 4^A001221(n) for n > 0.

Original entry on oeis.org

1, 4, 4, 8, 4, 16, 4, 12, 8, 16, 4, 32, 4, 16, 16, 16, 4, 32, 4, 32, 16, 16, 4, 48, 8, 16, 12, 32, 4, 64, 4, 20, 16, 16, 16, 64, 4, 16, 16, 48, 4, 64, 4, 32, 32, 16, 4, 64, 8, 32, 16, 32, 4, 48, 16, 48, 16, 16, 4, 128, 4, 16, 32, 24, 16, 64, 4, 32, 16, 64, 4
Offset: 1

Views

Author

Werner Schulte, Dec 03 2018

Keywords

Comments

Let k be some fixed integer and a_k(n) = A005361(n) * k^A001221(n) for n > 0 with 0^0 = 1. Then a_k(n) is multiplicative with a_k(p^e) = k*e for prime p and e > 0. For k = 0 see A000007 (offset 1), for k = 1 see A005361, for k = 2 see A322327, for k = 3 see A226602 (offset 1), and for k = 4 see this sequence.

Crossrefs

Programs

  • Maple
    f:= n -> mul(4*t[2],t=ifactors(n)[2]):
    map(f, [$1..100]); # Robert Israel, Dec 07 2018
  • Mathematica
    a[n_] := If[n==1, 1, Module[{f = FactorInteger[n]}, 4^Length[f] * Times@@f[[;; , 2]]]]; Array[a, 100] (* Amiram Eldar, Dec 03 2018 *)
  • PARI
    a(n) = my(f=factor(n)); vecprod(f[,2])*4^omega(n); \\ Michel Marcus, Dec 04 2018
    
  • Python
    from math import prod
    from sympy import factorint
    def A322328(n): return prod(e<<2 for e in factorint(n).values()) # Chai Wah Wu, Dec 24 2022

Formula

Multiplicative with a(p^e) = 4*e for prime p and e > 0.
Dirichlet g.f.: (zeta(s))^4 / (zeta(2*s))^2.
Dirichlet inverse is b(n) = a(n) * A008836(n) for n > 0, and b(n) is multiplicative with b(p^e) = 4*e*(-1)^e for prime p and e > 0.
Equals Dirichlet convolution of A034444 with itself.
Equals Dirichlet convolution of A000005 with abs(A007427).

A353500 Numbers that are the smallest number with product of prime exponents k for some k. Sorted positions of first appearances in A005361, unsorted version A085629.

Original entry on oeis.org

1, 4, 8, 16, 32, 64, 128, 144, 216, 288, 432, 864, 1152, 1296, 1728, 2048, 2592, 3456, 5184, 7776, 8192, 10368, 13824, 15552, 18432, 20736, 31104, 41472, 55296, 62208, 73728, 86400, 108000, 129600, 131072, 165888, 194400, 216000, 221184, 259200, 279936, 324000
Offset: 1

Views

Author

Gus Wiseman, May 17 2022

Keywords

Comments

All terms are highly powerful (A005934), but that sequence looks only at first appearances that reach a record, and is missing 1152, 2048, 8192, etc.

Examples

			The prime exponents of 86400 are (7,3,2), and this is the first case of product 42, so 86400 is in the sequence.
		

Crossrefs

These are the positions of first appearances in A005361, counted by A266477.
This is the sorted version of A085629.
The version for shadows instead of exponents is A353397, firsts in A353394.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices, counted by A339095.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime exponents, sorted A118914.
A130091 lists numbers with distinct prime exponents, counted by A098859.
A181819 gives prime shadow, with an inverse A181821.
Subsequence of A181800.

Programs

  • Mathematica
    nn=1000;
    d=Table[Times@@Last/@FactorInteger[n],{n,nn}];
    Select[Range[nn],!MemberQ[Take[d,#-1],d[[#]]]&]
    lps[fct_] := Module[{nf = Length[fct]}, Times @@ (Prime[Range[nf]]^Reverse[fct])]; lps[{1}] = 1; q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, (n == 1 || AllTrue[e, # > 1 &]) && n == Min[lps /@ f[Times @@ e]]]; Select[Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]], q] (* Amiram Eldar, Sep 29 2024, using the function f by T. D. Noe at A162247 *)

A085651 Index of the first of two successive 2's in A005361.

Original entry on oeis.org

44, 49, 75, 98, 116, 147, 171, 244, 260, 275, 315, 332, 363, 387, 475, 476, 507, 524, 531, 548, 549, 603, 604, 636, 692, 724, 725, 747, 764, 774, 819, 844, 845, 846, 867, 908, 924, 931, 963, 1035, 1075, 1083, 1179, 1196, 1251, 1274, 1275, 1324, 1340, 1395
Offset: 1

Views

Author

Keywords

Comments

Numbers such that bigomega(n) - omega(n) = 1 and bigomega(n+1) - omega(n+1) = 1, where bigomega(n) is the number of primes dividing n (counted with repetition) and omega(n) is the number of distinct primes dividing n. - Michel Lagneau, Dec 17 2011
Elements of A060687 whose successor is also in A060687. - Emmanuel Vantieghem, Mar 05 2017
This sequence has 3548 terms up to 10^5, 35340 up to 10^6, 353147 up to 10^7, and 3531738 up to 10^8, suggesting a natural density around 0.0353.... - Charles R Greathouse IV, Mar 06 2017

Crossrefs

Programs

  • Mathematica
    Select[Range[1400],PrimeOmega[#]-PrimeNu[#] == 1 && PrimeOmega[#+1] - PrimeNu[#+1] == 1 &] (* Indranil Ghosh, Mar 05 2017 *)
    SequencePosition[Table[PrimeOmega[n]-PrimeNu[n],{n,1500}],{1,1}][[;;,1]] (* Harvey P. Dale, Jul 17 2024 *)
  • PARI
    isok(n) = (bigomega(n)-omega(n) == 1) && (bigomega(n+1)-omega(n+1) == 1); \\ Michel Marcus, Mar 05 2017
    
  • PARI
    is(n)=factorback(factor(n)[,2])==2 && factorback(factor(n+1)[,2])==2 \\ Charles R Greathouse IV, Mar 06 2017

A052306 Product of exponents of prime factorization of n by prime signature: A005361(A025487).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 3, 1, 5, 4, 4, 2, 6, 6, 5, 3, 7, 8, 4, 6, 1, 9, 4, 8, 10, 6, 7, 2, 12, 5, 9, 12, 8, 8, 3, 15, 8, 6, 10, 9, 14, 4, 16, 10, 9, 4, 18, 12, 7, 11, 12, 16, 1, 6, 20, 12, 10, 5, 21, 16, 8, 12, 15, 18, 2, 8, 24, 18, 14, 11, 8, 16, 6, 24, 20, 9, 9, 25, 13, 18, 20, 3
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Crossrefs

Programs

  • PARI
    lista() = {v = readvec("b025487.txt"); for (i=1, #v, f = factor(v[i]); print1(prod(k=1, #f~, f[k,2]), ", "););} \\ Michel Marcus, Nov 02 2014

Extensions

Offset updated by Matthew Vandermast, Nov 08 2008

A082091 a(n) = one more than the number of iterations of A005361 needed to reach 1 from the starting value n.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 4, 3, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 3, 4, 2, 2, 2, 3, 2, 2
Offset: 1

Views

Author

Labos Elemer, Apr 09 2003

Keywords

Examples

			For n = 2 = 2^1, A005361(2) = 1, so we reach 1 in one step, and thus a(2) = 1+1 = 2.
For n = 4 = 2^2, A005361(4) = 2; A005361(2) = 1, so we reach 1 in two steps, and thus a(4) = 2+1 = 3.
For n = 6 = 2^1 * 3^1, A005361(6) = 1*1 = 1, so we reach 1 in one step, and thus a(6) = 1+1 = 2.
For n = 64 = 2^6, A005361(64) = 6, thus a(64) = 1 + a(6) = 3.
For n = 10! = 3628800 = 2^8 * 3^4 * 5^2 * 7*1, A005361(3628800) = 64, thus a(3628800) = 1 + a(64) = 4.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] expr[x_] := Apply[Times, ep[x]] Table[Length[FixedPointList[expr, w]]-1, {w, 2, 128}]
    (* Second program: *)
    Table[Length@ NestWhileList[Apply[Times, FactorInteger[#][[All, -1]]] &, n, # != 1 &], {n, 105}] (* Michael De Vlieger, Jul 29 2017 *)
  • PARI
    A005361(n) = factorback(factor(n)[, 2]); \\ This function from Charles R Greathouse IV, Nov 07 2014
    A082091(n) = if(1==n,1,1+A082091(A005361(n))); \\ Antti Karttunen, Jul 28 2017
    
  • PARI
    first(n) = my(v = vector(n)); v[1] = 1; for(i=2, n, v[i] = v[factorback(factor(i)[, 2])] + 1); v \\ David A. Corneth, Jul 28 2017
    
  • Scheme
    (define (A082091 n) (if (= 1 n) n (+ 1 (A082091 (A005361 n))))) ;; Antti Karttunen, Jul 28 2017

Formula

a(1) = 1, and for n > 1, a(n) = 1 + a(A005361(n)).

Extensions

Term a(1)=1 prepended, Name and Example sections edited by Antti Karttunen, Jul 28 2017

A219452 First position of a plateau of length n in the product-of-exponents function A005361.

Original entry on oeis.org

2, 4, 843, 74848, 671345, 8870024
Offset: 2

Views

Author

R. J. Mathar, Nov 20 2012

Keywords

Comments

The smallest index k such that A005361(k+1) = A005361(k+2) = ... = A005361(k+n).
a(8) is conjectured to be 1770019255373287038727484868192109228823.

Crossrefs

Cf. A005361.

A253288 Each term a(n) satisfies four properties: 1, divisible by all prime factors of n; 2, divisible by only the prime factors of n; 3, not equal to any of the terms a(1), a(2), ... a(n-1); 4, smallest number satisfying 1-3 if A005361(n) is even, or second smallest number satisfying 1-3 if A005361(n) is odd.

Original entry on oeis.org

1, 4, 9, 2, 25, 12, 49, 16, 3, 20, 121, 6, 169, 28, 45, 8, 289, 18, 361, 10, 63, 44, 529, 36, 5, 52, 81, 14, 841, 60, 961, 64, 99, 68, 175, 24, 1369, 76, 117, 50, 1681, 84, 1849, 22, 15, 92, 2209, 48, 7, 40, 153, 26, 2809, 72, 275, 98, 171, 116, 3481, 30, 3721, 124, 21, 32
Offset: 1

Views

Author

N. J. A. Sloane, Dec 29 2014

Keywords

Comments

This sequence is permutation of the positive integers.
The prime p occurs at n = p^2.
Multiples of a number x have density 1/x.
Conjecture: this permutation of positive integers is self-inverse. Compare with A358971. The principal distinction between this sequence and A358971 is that fixed points aside from A358971(1) = 1 are explicitly ruled out in the latter. - Michael De Vlieger, Dec 10 2022

References

  • Brad Klee, Posting to Sequence Fans Mailing List, Dec 21, 2014.

Crossrefs

Cf. A005361 (Product of exponents of prime factorization of n), A358971.

Programs

  • Maple
    A253288div := proc(a,n)
        local npr,d,apr ;
        npr := numtheory[factorset](n) ;
        for d in npr do
            if modp(a,d) <> 0 then
                return false;
            end if;
        end do:
        apr := numtheory[factorset](a) ;
        if apr minus npr = {} then
            true;
        else
            false;
        end if;
    end proc:
    A253288 := proc(n)
        option remember;
        local a,i,prev,act,ev ;
        if n =1 then
            1;
        else
            act := 1 ;
            if type(A005361(n),'even') then
                ev := true;
            else
                ev := false;
            end if;
            for a from 1 do
                prev := false;
                for i from 1 to n-1 do
                    if procname(i) = a then
                        prev := true;
                        break;
                    end if;
                end do:
                if not prev then
                    if A253288div(a,n) then
                        if ev or act > 1 then
                            return a;
                        else
                            act := act+1 ;
                        end if;
                    end if;
                end if;
            end do:
        end if;
    end proc:
    seq(A253288(n),n=1..80) ; # R. J. Mathar, Jan 22 2015
  • Mathematica
    nn = 1000; c[] = False; q[] = 1; f[n_] := f[n] = Map[Times @@ # &, Transpose@ FactorInteger[n]]; a[1] = 1; c[1] = True; u = 2; Do[Which[PrimeQ[n], k = n^2, PrimeQ@ Sqrt[n], k = Sqrt[n], SquareFreeQ[n], k = First@ f[n]; m = q[k]; While[Nand[! c[k m], k m != n, Divisible[k, First@ f[m]]], m++]; While[Nor[c[q[k] k], Divisible[k, First@ f[q[k]]]], q[k]++]; k *= m, True, t = 0; Set[{k, s}, {First[#], 1 + Boole@ OddQ@ Last[#]} &[f[n]]]; m = q[k]; Until[t == s, If[m > q[k], m++]; While[Nand[! c[k m], Divisible[k, First@f[m]]], m++]; t++]; If[s == 1, While[Nor[c[q[k] k], Divisible[k, First@ f[q[k]]]], q[k]++]]; k *= m]; Set[{a[n], c[k]}, {k, True}]; If[k == u, While[c[u], u++]], {n, 2, nn}]; Array[a, nn] (* Michael De Vlieger, Dec 10 2022 *)

Extensions

Terms beyond 361 from R. J. Mathar, Jan 22 2015
Showing 1-10 of 170 results. Next