cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A005361 Product of exponents of prime factorization of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1
Offset: 1

Views

Author

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487, A052306). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
There was a comment here that said "a(n) is the number of nilpotents elements in the ring Z/nZ", but this is false, see A003557.
a(n) is the number of square-full divisors of n. a(n) is also the number of divisors d of n such that d and n have the same prime factors, i.e., A007947(d) = A007947(n). - Laszlo Toth, May 22 2009
Number of divisors u of n such that u|(u^n/n). Row lengths in triangle of A284318. - Juri-Stepan Gerasimov, Apr 05 2017

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A340065 (Dgf at s=2).

Programs

  • Haskell
    a005361 = product . a124010_row -- Reinhard Zumkeller, Jan 09 2012
    
  • Maple
    A005361 := proc(n)
        local a, p ;
        a := 1 ;
        for p in ifactors(n)[2] do
           a := a*op(2, p) ;
        end do:
        a ;
    end proc:
    seq(A005361(n),n=1..30) ; # R. J. Mathar, Nov 20 2012
    # second Maple program:
    a:= n-> mul(i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 18 2020
  • Mathematica
    Prepend[ Array[ Times @@ Last[ Transpose[ FactorInteger[ # ] ] ]&, 100, 2 ], 1 ]
    Array[Times@@Transpose[FactorInteger[#]][[2]]&,80] (* Harvey P. Dale, Aug 15 2012 *)
  • PARI
    for(n=1,100, f=factor(n); print1(prod(i=1,omega(f), f[i,2]),",")) \\ edited by M. F. Hasler, Feb 18 2020
    
  • PARI
    a(n)=factorback(factor(n)[,2]) \\ Charles R Greathouse IV, Nov 07 2014
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X + X^2)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020
    
  • Python
    from math import prod
    from sympy import factorint
    def a(n): return prod(factorint(n).values())
    print([a(n) for n in range(1, 91)]) # Michael S. Branicky, Jul 04 2022
  • Scheme
    (define (A005361 n) (if (= 1 n) 1 (* (A067029 n) (A005361 (A028234 n))))) ;; Antti Karttunen, Mar 06 2017
    

Formula

n = Product (p_j^k_j) -> a(n) = Product (k_j).
Dirichlet g.f.: zeta(s)*zeta(2s)*zeta(3s)/zeta(6s).
Multiplicative with a(p^e) = e. - David W. Wilson, Aug 01 2001
a(n) = Sum_{d dividing n} floor(rad(d)/rad(n)) where rad(n) is A007947. - Enrique Pérez Herrero, Nov 06 2009
For n > 1: a(n) = Product_{k=1..A001221(n)} A124010(n,k). - Reinhard Zumkeller, Aug 27 2011
a(n) = tau(n/rad(n)), where tau is A000005 and rad is A007947. - Anthony Browne, May 11 2016
a(n) = Sum_{k=1..n}(floor(cos^2(Pi*k^n/n))*floor(cos^2(Pi*n/k))). - Anthony Browne, May 11 2016
From Antti Karttunen, Mar 06 2017: (Start)
For all n >= 1, a(prime^n) = n, a(A002110(n)) = a(A005117(n)) = 1. [From Crossrefs section.]
a(1) = 1; for n > 1, a(n) = A067029(n) * a(A028234(n)).
(End)
Let (b(n)) be multiplicative with b(p^e) = -1 + ( (floor((e-1)/3)+floor(e/3)) mod 4 ) for p prime and e > 0, then b(n) is the Dirichlet inverse of (a(n)). - Werner Schulte, Feb 23 2018
Sum_{i=1..k} a(i) ~ (zeta(2)*zeta(3)/zeta(6)) * k (Suryanarayana and Sitaramachandra Rao, 1972). - Amiram Eldar, Apr 13 2020
More precise asymptotics: Sum_{k=1..n} a(k) ~ 315*zeta(3)*n / (2*Pi^4) + zeta(1/2)*zeta(3/2)*sqrt(n) / zeta(3) + 6*zeta(1/3)*zeta(2/3)*n^(1/3) / Pi^2 [Knopfmacher, 1973]. - Vaclav Kotesovec, Jun 13 2020

A146290 Triangle T(n,m) read by rows (n >= 1, 0 <= m <= A061394(n)), giving the number of divisors of A025487(n) with m distinct prime factors.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 3, 2, 1, 4, 1, 4, 3, 1, 3, 3, 1, 1, 5, 1, 4, 4, 1, 5, 4, 1, 4, 5, 2, 1, 6, 1, 5, 6, 1, 6, 5, 1, 5, 7, 3, 1, 7, 1, 6, 8, 1, 5, 8, 4, 1, 7, 6, 1, 4, 6, 4, 1, 1, 6, 9, 1, 6, 9, 4, 1, 8, 1, 7, 10, 1, 6, 11, 6, 1, 8, 7, 1, 5, 9, 7, 2, 1, 7, 12, 1, 7, 11, 5, 1, 9, 1, 8, 12, 1, 7, 14
Offset: 1

Views

Author

Matthew Vandermast, Nov 11 2008

Keywords

Comments

The formula used in obtaining the A025487(n)th row (see below) also gives the number of divisors of the k-th power of A025487(n).
Every row that appears in A146289 appears exactly once in the table. Rows appear in order of first appearance in A146289.
T(n,0)=1.

Examples

			Rows begin:
  1;
  1,1;
  1,2;
  1,2,1;
  1,3;
  1,3,2;
  1,4;
  1,4,3;...
36's 9 divisors include 1 divisor with 0 distinct prime factors (1); 4 with 1 (2, 3, 4 and 9); and 4 with 2 (6, 12, 18 and 36). Since 36 = A025487(11), the 11th row of the table therefore reads (1, 4, 4). These are the positive coefficients of the polynomial equation 1 + 4k + 4k^2 = (1 + 2k)(1 + 2k), derived from the prime factorization of 36 (namely, 2^2*3^2).
		

Crossrefs

For the number of distinct prime factors of n, see A001221.
Row sums equal A146288(n). T(n, 1)=A036041(n) for n>1. T(n, A061394(n))=A052306(n).
Row A098719(n) of this table is identical to row n of A007318.
Cf. A146289. Also cf. A146291, A146292.

Formula

If A025487(n)'s canonical factorization into prime powers is Product p^e(p), then T(n, m) is the coefficient of k^m in the polynomial expansion of Product_p (1 + ek).
Showing 1-2 of 2 results.