A005364 Hoggatt sequence with parameter d=6.
1, 2, 9, 58, 506, 5462, 70226, 1038578, 17274974, 317292692, 6346909285, 136723993122, 3143278648954, 76547029418394, 1962350550273130, 52679691605422354, 1474290522744355250, 42847373913958703100, 1288899422418558314550, 40013380588722843337620
Offset: 0
Keywords
References
- D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt sums and Hoggatt triangles, in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..573
- J. W. Essam and A. J. Guttmann, Vicious walkers and directed polymer networks in general dimensions, Physical Review E, 52(6), (1995) pp. 5849-5862. See (60) and (63).
- D. C. Fielder, Letter to N. J. A. Sloane, Jun 1988
- D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt Sums and Hoggatt Triangles, Application of Fibonacci Numbers, 3 (1990) 77-88. Proceedings of 'The Third Annual Conference on Fibonacci Numbers and Their Applications,' Pisa, Italy, July 25-29, 1988. (Annotated scanned copy)
- Vaclav Kotesovec, Calculation of the asymptotic formula for the sequence A005366
Crossrefs
Programs
-
Magma
A142465:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..5]]) >; A005364:= func< n | (&+[A142465(n,k): k in [0..n]]) >; [A005364(n): n in [0..40]]; // G. C. Greubel, Nov 13 2022
-
Mathematica
A005364[n_]:=HypergeometricPFQ[{-5-n,-4-n,-3-n,-2-n,-1-n,-n},{2,3,4,5,6},1] (* Richard L. Ollerton, Sep 13 2006 *)
-
PARI
a(n) = my(d=6); 1 + sum(h=0, n-1, prod(k=0, h, binomial(n+d-1-k,d) / binomial(d + k, d))); \\ Michel Marcus, Feb 08 2021
-
SageMath
def A005364(n): return simplify(hypergeometric([-5-n, -4-n, -3-n, -2-n, -1-n, -n],[2, 3, 4, 5, 6], 1)) [A005364(n) for n in range(51)] # G. C. Greubel, Nov 13 2022
Formula
a(n) = Hypergeometric6F5([-5-n, -4-n, -3-n, -2-n, -1-n, -n], [2, 3, 4, 5, 6], 1). - Richard L. Ollerton, Sep 13 2006
a(n) = S(6,n) where S(d,n) = 1 + Sum_{h=0..n-1} Product_{k=0..h} binomial(n+d-1-k,d) / binomial(d + k, d) [From Fielder and Alford]. - Sean A. Irvine, May 29 2016
a(n) ~ 135 * 2^(6*n + 40) / (sqrt(3) * Pi^(5/2) * n^(35/2)). - Vaclav Kotesovec, Apr 01 2021
Extensions
More terms from Sean A. Irvine, May 29 2016
Comments