A005365 Hoggatt sequence with parameter d=7.
1, 2, 10, 74, 782, 10562, 175826, 3457742, 78408332, 2005691690, 56970282514, 1772967273794, 59814500606018, 2168062920325850, 83802728579860658, 3432438439271783026, 148165335791410936770, 6708873999658599592672
Offset: 0
Keywords
References
- D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt sums and Hoggatt triangles, in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..496
- J. W. Essam and A. J. Guttmann, Vicious walkers and directed polymer networks in general dimensions, Physical Review E, 52(6), (1995) pp. 5849-5862. See (60) and (63).
- D. C. Fielder, Letter to N. J. A. Sloane, Jun 1988
- D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt Sums and Hoggatt Triangles, Application of Fibonacci Numbers, 3 (1990) 77-88. Proceedings of 'The Third Annual Conference on Fibonacci Numbers and Their Applications,' Pisa, Italy, July 25-29, 1988. (Annotated scanned copy)
- Vaclav Kotesovec, Calculation of the asymptotic formula for the sequence A005366
Crossrefs
Programs
-
Magma
A142467:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..6]]) >; A005365:= func< n | (&+[A142467(n,k): k in [0..n]]) >; [A005365(n): n in [0..40]]; // G. C. Greubel, Nov 13 2022
-
Mathematica
A005365[n_]:=HypergeometricPFQ[{-6-n,-5-n,-4-n,-3-n,-2-n,-1-n,-n},{2,3,4,5,6,7},-1] (* Richard L. Ollerton, Sep 13 2006 *)
-
PARI
a(n) = my(d=7); 1 + sum(h=0, n-1, prod(k=0, h, binomial(n+d-1-k,d) / binomial(d + k, d))); \\ Michel Marcus, Feb 08 2021
-
SageMath
def A005365(n): return simplify(hypergeometric([-6-n, -5-n, -4-n, -3-n, -2-n, -1-n, -n], [2,3,4,5,6,7], -1)) [A005365(n) for n in range(51)] # G. C. Greubel, Nov 13 2022
Formula
a(n) = Hypergeometric7F6([-6-n, -5-n, -4-n, -3-n, -2-n, -1-n, -n], [2, 3, 4, 5, 6, 7], -1). - Richard L. Ollerton, Sep 13 2006
a(n) = S(7,n) where S(d,n) is defined in A005364. - Sean A. Irvine, May 29 2016
a(n) ~ 6075 * 2^(7*n + 57) / (sqrt(7) * Pi^3 * n^24). - Vaclav Kotesovec, Apr 01 2021
Extensions
More terms from Sean A. Irvine, May 29 2016
Comments