A005439 Genocchi medians (or Genocchi numbers of second kind).
1, 1, 2, 8, 56, 608, 9440, 198272, 5410688, 186043904, 7867739648, 401293838336, 24290513745920, 1721379917619200, 141174819474169856, 13266093250285568000, 1415974941618255921152, 170361620874699124637696, 22948071824232932086513664, 3439933090471867097102680064
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..270 (terms n = 1..100 from T. D. Noe)
- A. Ayyer, D. Hathcock, and P. Tetali, Toppleable Permutations, Excedances and Acyclic Orientations, arXiv:2010.11236 [math.CO], 2020.
- Paul Barry, Series reversion with Jacobi and Thron continued fractions, arXiv:2107.14278 [math.NT], 2021.
- Beáta Bényi, A Bijection for the Boolean Numbers of Ferrers Graphs, Graphs and Combinatorics (2022) Vol. 38, No. 10.
- Ange Bigeni, The universal sl2 weight system and the Kreweras triangle, arXiv:1712.05475 [math.CO], 2017.
- Ange Bigeni, Combinatorial interpretations of the Kreweras triangle in terms of subset tuples, arXiv:1712.01929 [math.CO], 2017.
- Ange Bigeni, A generalization of the Kreweras triangle through the universal sl_2 weight system, Journal of Combinatorial Theory, Series A (2019) Vol. 161, 309-326.
- Alin Bostan, Lucia Di Vizio, and Kilian Raschel, Singular walks in the quarter plane and Bernoulli numbers, arXiv:2504.13542 [math.CO], 2025. See p. 28.
- Alexander Burstein, Sergi Elizalde, and Toufik Mansour, Restricted Dumont permutations, Dyck paths and noncrossing partitions, arXiv:math/0610234 [math.CO], 2006. [Theorem 3.5]
- Kwang-Wu Chen, An Interesting Lemma for Regular C-fractions, J. Integer Seqs., Vol. 6, 2003.
- Shane Chern, Parity considerations for drops in cycles on {1,2,...,n}, arXiv:2112.02074 [math.CO], 2021.
- Bishal Deb and Alan D. Sokal, Classical continued fractions for some multivariate polynomials generalizing the Genocchi and median Genocchi numbers, arXiv:2212.07232 [math.CO], 2022. See pp. 14-15.
- Bishal Deb, Continued fractions using a Laguerre digraph interpretation of the Foata-Zeilberger bijection and its variants, arXiv:2304.14487 [math.CO], 2023. See p. 4.
- Bishal Deb, Cyclic sieving phenomena via combinatorics of continued fractions, arXiv:2508.13709 [math.CO], 2025. See p. 38.
- D. Dumont and J. Zeng, Polynômes d'Euler et les fractions continues de Stieltjes-Rogers, Ramanujan J. 2 (1998) 3, 387-410.
- Richard Ehrenborg and Einar Steingrímsson, Yet another triangle for the Genocchi numbers, European J. Combin. 21 (2000), no. 5, 593-600. MR1771988 (2001h:05008).
- Sen-Peng Eu, Tung-Shan Fu, Hsin-Hao Lai, and Yuan-Hsun Lo, Gamma-positivity for a Refinement of Median Genocchi Numbers, arXiv:2103.09130 [math.CO], 2021.
- Vincent Froese and Malte Renken, Terrain-like Graphs and the Median Genocchi Numbers, arXiv:2210.16281 [math.CO], 2022.
- Shishuo Fu, Zhicong Lin, and Zhi-Wei Sun, Proofs of five conjectures relating permanents to combinatorial sequences, arXiv:2109.11506 [math.CO], 2021.
- Shishuo Fu, Zhicong Lin, and Zhi-Wei Sun, Permanent identities, combinatorial sequences, and permutation statistics, Advances in Applied Mathematics, Volume 163, Part A, 102789 (2025).
- I. M. Gessel, Applications of the classical umbral calculus, arXiv:math/0108121 [math.CO], 2001.
- G. Han and J. Zeng, On a q-sequence that generalizes the median Genocchi numbers, Annal Sci. Math. Quebec, 23(1999), no. 1, 63-72.
- Gábor Hetyei, Alternation acyclic tournaments, arXiv:math/1704.07245 [math.CO], 2017.
- G. Kreweras, Sur les permutations comptées par les nombres de Genocchi de 1-ière et 2-ième espèce, Europ. J. Comb., vol. 18, pp. 49-58, 1997. (See also page 76.)
- Alexander Lazar and Michelle L. Wachs, The Homogenized Linial Arrangement and Genocchi Numbers, arXiv:1910.07651 [math.CO], 2019.
- Qiongqiong Pan and Jiang Zeng, Cycles of even-odd drop permutations and continued fractions of Genocchi numbers, arXiv:2108.03200 [math.CO], 2021.
- A. Randrianarivony and J. Zeng, Une famille de polynômes qui interpole plusieurs suites classiques de nombres, Adv. Appl. Math. 17 (1996), 1-26. In French.
- L. Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.
- Alan Sokal, Table of n, a(n) for n = 1..10000 [315 MB file]
- Zhi-Wei Sun, Arithmetic properties of some permanents, arXiv:2108.07723 [math.GM], 2021.
- G. Viennot, Interprétations combinatoires des nombres d'Euler et de Genocchi, Seminar on Number Theory, 1981/1982, Exp. No. 11, 94 pp., Univ. Bordeaux I, Talence, 1982.
Programs
-
GAP
List([1..20],n->2*(-1)^n*Sum([0..n],k->Binomial(n,k)*(1-2^(n+k+1))*Bernoulli(n+k+1))); # Muniru A Asiru, Nov 29 2018
-
Magma
[2*(-1)^n*(&+[Binomial(n, k)*(1-2^(n+k+1))*Bernoulli(n+k+1): k in [0..n]]): n in [1..20]]; // G. C. Greubel, Nov 28 2018
-
Maple
seq(2*(-1)^n*add(binomial(n,k)*(1 - 2^(n+k+1))*bernoulli(n+k+1), k=0..n), n=0..20); # G. C. Greubel, Oct 18 2019
-
Mathematica
a[n_]:= 2*(-1)^(n-2)*Sum[Binomial[n, k]*(1 -2^(n+k+1))*BernoulliB[n+k+1], {k, 0, n}]; Table[a[n], {n,16}] (* Jean-François Alcover, Jul 18 2011, after PARI prog. *)
-
PARI
a(n)=2*(-1)^n*sum(k=0,n,binomial(n,k)*(1-2^(n+k+1))* bernfrac(n+k+1))
-
PARI
a(n)=local(CF=1+x*O(x^(n+2)));if(n<0,return(0), for(k=1,n+1,CF=1/(1-((n-k+1)\2+1)^2*x*CF));return(Vec(CF)[n+2])) \\ Paul D. Hanna
-
Python
from math import comb from sympy import bernoulli def A005439(n): return (-2 if n&1 else 2)*sum(comb(n,k)*(1-(1<
Chai Wah Wu, Apr 14 2023 -
Sage
# Algorithm of L. Seidel (1877) # n -> [a(1), ..., a(n)] for n >= 1. def A005439_list(n) : D = []; [D.append(0) for i in (0..n+2)]; D[1] = 1 R = [] ; b = True for i in(0..2*n-1) : h = i//2 + 1 if b : for k in range(h-1,0,-1) : D[k] += D[k+1] else : for k in range(1,h+1,1) : D[k] += D[k-1] if b : R.append(D[1]) b = not b return R A005439_list(18) # Peter Luschny, Apr 01 2012
-
Sage
[2*(-1)^n*sum(binomial(n,k)*(1-2^(n+k+1))*bernoulli(n+k+1) for k in (0..n)) for n in (1..20)] # G. C. Greubel, Oct 18 2019
Formula
a(n) = T(n, 1) where T(1, x) = 1; T(n, x) = (x+1)*((x+1)*T(n-1, x+1)-x*T(n-1, x)); see A058942.
a(n) = A000366(n)*2^(n-1).
a(n) = 2 * (-1)^n * Sum_{k=0..n} binomial(n, k)*(1-2^(n+k+1))*B(n+k+1), with B(n) the Bernoulli numbers. - Ralf Stephan, Apr 17 2004
O.g.f.: 1 + x*A(x) = 1/(1-x/(1-x/(1-4*x/(1-4*x/(1-9*x/(1-9*x/(... -[(n+1)/2]^2*x/(1-...)))))))) (continued fraction). - Paul D. Hanna, Oct 07 2005
G.f.: (of 1,1,2,8,...) 1/(1-x-x^2/(1-5*x-16*x^2/(1-13*x-81*x^2/(1-25*x-256*x^2/(1-41*x-625*x^2/(1-... (continued fraction). - Paul Barry, Nov 27 2009
O.g.f.: Sum_{n>=0} n!*(n+1)! * x^(n+1) / Product_{k=1..n} (1 + k*(k+1)*x). - Paul D. Hanna, May 10 2012
From Sergei N. Gladkovskii, Dec 14 2011, Dec 27 2012, May 29 2013, Oct 09 2013, Oct 24 2013, Oct 27 2013: (Start)
Continued fractions:
G.f.: A(x) = 1/S(0), S(k) = 1 - x*(k+1)*(k+2)/(1 - x*(k+1)*(k+2)/S(k+1)).
G.f.: A(x) = -1/S(0), S(k) = 2*x*(k+1)^2 - 1 - x^2*(k+1)^2*(k+2)^2/S(k+1).
G.f.: A(x) = 1/G(0) where G(k) = 1 - x*(k+1)^2/(1 - x*(k+1)^2/G(k+1)).
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - 1/(1 - 1/(4*x*(k+1)) + 1/G(k+1))).
G.f.: Q(0)/x - 1/x, where Q(k) = 1 - x*(k+1)^2/( x*(k+1)^2 - 1/(1 - x*(k+1)^2/( x*(k+1)^2 - 1/Q(k+1)))).
G.f.: T(0)/(1-2*x), where T(k) = 1 - x^2*((k + 2)*(k+1))^2/(x^2*((k + 2)*(k+1))^2 - (1 - 2*x*k^2 - 4*x*k - 2*x)*(1 - 2*x*k^2 - 8*x*k - 8*x)/T(k+1)).
G.f.: R(0), where R(k) = 1 - x*(k+1)*(k+2)/( x*(k+1)*(k+2) - 1/(1 - x*(k+1)*(k+2)/( x*(k+1)*(k+2) - 1/R(k+1) ))). (End)
a(n) ~ 2^(2*n+4) * n^(2*n+3/2) / (exp(2*n) * Pi^(2*n+1/2)). - Vaclav Kotesovec, Oct 28 2014
Rewriting the above: a(n) ~ 4*(2*n+1)! / Pi^(2*n+1). Compare to Genocchi numbers A110501(n) = g_n ~ 4*(2*n)! / Pi^(2*n). So these are indeed like "Genocchi medians" g_{n + 1/2}. - Alan Sokal, May 13 2022
Asymptotic expansion: a(n) ~ 4*(2*n+1)! * Pi^(-(2*n+1)) * (1 + (Pi^2/16)/n + (Pi^2 (Pi^2 - 16)/512)/n^2 + (Pi^2 (Pi^4 + 384)/24576)/n^3 + (Pi^2 (Pi^6 + 96*Pi^4 + 768*Pi^2 - 12288)/1572864)/n^4 + (Pi^2 (Pi^8 + 320*Pi^6 + 12800*Pi^4 + 491520)/125829120)/n^5 + ...) --- Proof uses binomial sum for Genocchi medians in terms of Genocchi or Bernoulli numbers, combined with leading term of convergent sum (with exponentially small corrections) for the latter. Can also check against the 10000 term a-file. - Alan Sokal, May 23 2022.
a(n) = n!^2 * [x^n*y^n] exp(x)*f(x-y), where f(x) is the derivative of the Genocchi number generating function 2*x/(exp(x)+1). - Ira M. Gessel, Jul 23 2024
Extensions
More terms and additional comments from David W. Wilson, Jan 11 2001
a(0)=1 prepended by Peter Luschny, Apr 14 2023
Comments