cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005473 Primes of form k^2 + 4.

Original entry on oeis.org

5, 13, 29, 53, 173, 229, 293, 733, 1093, 1229, 1373, 2029, 2213, 3253, 4229, 4493, 5333, 7229, 7573, 9029, 9413, 10613, 13229, 13693, 15629, 18229, 18773, 21613, 24029, 26573, 27893, 31333, 33493, 37253, 41213, 42853, 46229, 47093, 54293
Offset: 1

Views

Author

Keywords

Comments

a(n) mod 24 = 5 or 13 and if a(n) mod 24 =13 then a(n) mod 72 = 13.
From Artur Jasinski, Oct 30 2008: (Start)
Primes p such that the continued fraction of (1+sqrt(p))/2 has period 1.
Primes in A078370 = primes of the form 4*k^2 + 4*k + 5 = (2*k+1)^2 + 4.
(End)
Starting at a(3) all the primes in this sequence can be expressed as the following sum: ((2*k+1)*(2*k+3)+(2*k+3)*(2*k+5)+(2*k+5)+(2*k+7)+(2*k+7)*(2*k+9))/4 for some values (not all!) of k>=0. Thus for a(5)=173 the sum is (9*11 + 11*13 + 13*15 + 15*17)/4=173. - J. M. Bergot, Nov 03 2014

Examples

			a(2)=29 since 29=5^2+4 is prime.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A185086.
a(n)-4 is contained in A016754. (a(n)-5)/8 is contained in A000217. Either (a(n)-5)/24 is contained in A001318 (if a(n) mod 24=5) or (a(n)-13)/72 is contained in A000217 (if a(n) mod 24=13). Floor[a(n)/24] is contained in A001840.

Programs

  • Haskell
    a005473 n = a005473_list !! (n-1)
    a005473_list = filter ((== 1) . a010051') $ map (+ 4) a000290_list
    -- Reinhard Zumkeller, Mar 12 2012
  • Magma
    [a: n in [0..300] | IsPrime(a) where a is n^2+4]; // Vincenzo Librandi, Nov 30 2011
    
  • Maple
    select(isprime,[seq(4*k^2 + 4*k + 5, k=0..1000)]); # Robert Israel, Nov 02 2014
  • Mathematica
    Intersection[Table[n^2+4,{n,0,10^2}],Prime[Range[9*10^3]]] ...or... For[i=4,i<=4,a={};Do[If[PrimeQ[n^2+i],AppendTo[a,n^2+i]],{n,0,100}];Print["n^2+",i,",",a];i++ ] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
    aa = {}; Do[If[PrimeQ[4 k^2 + 4 k + 5], AppendTo[aa, 4 k^2 + 4 k + 5]], {k, 0, 200}]; aa (* Artur Jasinski, Oct 30 2008 *)
    Select[Table[n^2+4,{n,0,7000}],PrimeQ] (* Vincenzo Librandi, Nov 30 2011 *)
  • PARI
    for(n=1,1e3,if(isprime(t=n^2+4),print1(t","))) \\ Charles R Greathouse IV, Jul 05 2011
    

Formula

a(n) = 24*A056904(n)+m, where m=13 if A056904(n) is three times a triangular number (and n>0) and m=5 if A056904(n) is not three times a triangular number (or n=0).
For n>=2, a(n) = A098062(n-1). - Zak Seidov, Apr 12 2007

Extensions

More terms and additional comments from Henry Bottomley, Jul 06 2000