A005475 a(n) = n*(5*n+1)/2.
0, 3, 11, 24, 42, 65, 93, 126, 164, 207, 255, 308, 366, 429, 497, 570, 648, 731, 819, 912, 1010, 1113, 1221, 1334, 1452, 1575, 1703, 1836, 1974, 2117, 2265, 2418, 2576, 2739, 2907, 3080, 3258, 3441, 3629
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- A. Horzela, P. Blasiak, G. E. H. Duchamp, K. A. Penson and A. I. Solomon, A product formula and combinatorial field theory, arXiv:quant-ph/0409152, 2004.
- Leo Tavares, Illustration: Hexagonal Trapeziums.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Maple
seq(binomial(5*n+1,2)/5, n=0..34); # Zerinvary Lajos, Jan 21 2007 a:=n->sum(2*n+j, j=1..n): seq(a(n), n=0..38); # Zerinvary Lajos, Apr 29 2007
-
Mathematica
Table[n (5 n + 1)/2, {n, 0, 40}] (* Bruno Berselli, Oct 13 2016 *)
-
PARI
a(n)=n*(5*n+1)/2; \\ Joerg Arndt, Mar 27 2013
Formula
a(n) = A110449(n, 2) for n>1.
a(n) = a(n-1) + 5*n - 2 for n>0, a(0)=0. - Vincenzo Librandi, Nov 18 2010
a(n) = A130520(5*n+2). - Philippe Deléham, Mar 26 2013
a(n) = A202803(n)/2. - Philippe Deléham, Mar 27 2013
From G. C. Greubel, Aug 23 2017: (Start)
G.f.: x*(2*x + 3)/(1-x)^3.
E.g.f.: (x/2)*(5*x+6)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 10+2*gamma+2*Psi(1/5) = 0.57635... see A001620 and A200135. - R. J. Mathar, May 30 2022
Sum_{n>=1} 1/a(n) = 10 - sqrt(1+2/sqrt(5))*Pi - sqrt(5)*log(phi) - 5*log(5)/2, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 10 2022
Extensions
Incorrect comment deleted and minor errors corrected by Johannes W. Meijer, Feb 04 2010
Comments