cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005475 a(n) = n*(5*n+1)/2.

Original entry on oeis.org

0, 3, 11, 24, 42, 65, 93, 126, 164, 207, 255, 308, 366, 429, 497, 570, 648, 731, 819, 912, 1010, 1113, 1221, 1334, 1452, 1575, 1703, 1836, 1974, 2117, 2265, 2418, 2576, 2739, 2907, 3080, 3258, 3441, 3629
Offset: 0

Views

Author

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 11, ..., and the line from 3, in the direction 3, 24, ..., in the square spiral whose edges have length A195013 and whose vertices are the numbers A195014. - Omar E. Pol, Sep 26 2011
For n >= 3, a(n) is the sum of the numbers appearing in the 3rd row of an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows. - Wesley Ivan Hurt, May 17 2021

Crossrefs

Cf. similar sequences listed in A022289.

Programs

  • Maple
    seq(binomial(5*n+1,2)/5, n=0..34); # Zerinvary Lajos, Jan 21 2007
    a:=n->sum(2*n+j, j=1..n): seq(a(n), n=0..38); # Zerinvary Lajos, Apr 29 2007
  • Mathematica
    Table[n (5 n + 1)/2, {n, 0, 40}] (* Bruno Berselli, Oct 13 2016 *)
  • PARI
    a(n)=n*(5*n+1)/2; \\ Joerg Arndt, Mar 27 2013

Formula

a(n) = A110449(n, 2) for n>1.
a(n) = a(n-1) + 5*n - 2 for n>0, a(0)=0. - Vincenzo Librandi, Nov 18 2010
a(n) = A130520(5*n+2). - Philippe Deléham, Mar 26 2013
a(n) = A202803(n)/2. - Philippe Deléham, Mar 27 2013
a(n) = A162147(n) - A162147(n-1). - J. M. Bergot, Jun 21 2013
a(n) = A000217(3*n) - A000217(2*n). - Bruno Berselli, Oct 13 2016
From G. C. Greubel, Aug 23 2017: (Start)
G.f.: x*(2*x + 3)/(1-x)^3.
E.g.f.: (x/2)*(5*x+6)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 10+2*gamma+2*Psi(1/5) = 0.57635... see A001620 and A200135. - R. J. Mathar, May 30 2022
Sum_{n>=1} 1/a(n) = 10 - sqrt(1+2/sqrt(5))*Pi - sqrt(5)*log(phi) - 5*log(5)/2, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 10 2022

Extensions

Incorrect comment deleted and minor errors corrected by Johannes W. Meijer, Feb 04 2010