A005476 a(n) = n*(5*n - 1)/2.
0, 2, 9, 21, 38, 60, 87, 119, 156, 198, 245, 297, 354, 416, 483, 555, 632, 714, 801, 893, 990, 1092, 1199, 1311, 1428, 1550, 1677, 1809, 1946, 2088, 2235, 2387, 2544, 2706, 2873, 3045, 3222, 3404, 3591
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Matthew Scroggs, Advent Calendar 2023 Solutions.
- Leo Tavares, Illustration: Triangulated Diamonds
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..40], n-> Binomial(5*n,2)/5); # G. C. Greubel, Jul 30 2019
-
Magma
[Binomial(5*n,2)/5: n in [0..40]]; // G. C. Greubel, Jul 30 2019
-
Maple
[seq(binomial(5*n,2)/5,n=0..40)]; # Zerinvary Lajos, Jan 02 2007
-
Mathematica
Table[n(5n-1)/2, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Oct 25 2008 *)
-
PARI
a(n)=n*(5*n-1)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
Sage
[binomial(5*n,2)/5 for n in (0..40)] # G. C. Greubel, Jul 30 2019
Formula
a(n) = C(5*n,2)/5 for n>=0. - Zerinvary Lajos, Jan 02 2007
a(n) = a(n-1) + 5*n - 3 for n>0, a(0)=0. - Vincenzo Librandi, Nov 18 2010
a(n) = A130520(5*n+1). - Philippe Deléham, Mar 26 2013
From Bruno Berselli, Oct 17 2016: (Start)
G.f.: x*(2 + 3*x)/(1 - x)^3.
E.g.f.: x*(4 + 5*x)*exp(x)/2. - G. C. Greubel, Jul 30 2019
Sum_{n>=1} 1/a(n) = 2 * A294833. - Amiram Eldar, Nov 16 2020
From Leo Tavares, Nov 20 2021: (Start)
Comments