cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005565 Number of walks on square lattice.

Original entry on oeis.org

20, 75, 189, 392, 720, 1215, 1925, 2904, 4212, 5915, 8085, 10800, 14144, 18207, 23085, 28880, 35700, 43659, 52877, 63480, 75600, 89375, 104949, 122472, 142100, 163995, 188325, 215264, 244992, 277695, 313565, 352800, 395604, 442187, 492765, 547560, 606800
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Magma
    [1/4*(n^4+14*n^3+69*n^2+136*n+80): n in [0..40]]; // Vincenzo Librandi, May 24 2012
  • Maple
    seq(add (k^3-n^2, k =0..n), n=4..28 ); # Zerinvary Lajos, Aug 26 2007
    A005565:=(-20+25*z-14*z**2+3*z**3)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[(20-25x+14x^2-3x^3)/(1-x)^5,{x,0,40}],x] (* Vincenzo Librandi, May 24 2012 *)
    LinearRecurrence[{5,-10,10,-5,1},{20,75,189,392,720},40] (* Harvey P. Dale, Dec 04 2020 *)
    Differences[Table[Sum[x^3 - y^2, {x, 0, g}, {y, x, g}], {g, 3, 30}]] (* Horst H. Manninger, Jun 19 2025 *)
  • PARI
    a(n)=(n^4+14*n^3+69*n^2+136*n)/4+20 \\ Charles R Greathouse IV, Nov 22 2011
    

Formula

From Ralf Stephan, Apr 23 2004: (Start)
a(n) = (1/4)*(n^4+14n^3+69n^2+136n+80).
G.f.: (20-25x+14x^2-3x^3)/(1-x)^5. (End)
a(n) = binomial(n+4,2)^2 - binomial(n+4,1)^2. - Gary Detlefs, Nov 22 2011
Using two consecutive triangular numbers t(n) and t(n+1), starting at n=3, compute the determinant of a 2 X 2 matrix with the first row t(n), t(n+1) and the second row t(n+1), 2*t(n+1). This gives (n+1)^2*(n-2)*(n+2)/4 = a(n-3). - J. M. Bergot, May 17 2012
E.g.f.: exp(x)*(80 + 220*x + 118*x^2 + 20*x^3 + x^4)/4. - Stefano Spezia, Jun 20 2025