cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005584 Coefficients of Chebyshev polynomials.

Original entry on oeis.org

2, 13, 49, 140, 336, 714, 1386, 2508, 4290, 7007, 11011, 16744, 24752, 35700, 50388, 69768, 94962, 127281, 168245, 219604, 283360, 361790, 457470, 573300, 712530, 878787, 1076103, 1308944, 1582240, 1901416, 2272424, 2701776, 3196578, 3764565, 4414137, 5154396
Offset: 1

Views

Author

Keywords

Comments

If X is an n-set and Y a fixed 2-subset of X then a(n-6) is equal to the number of (n-6)-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
a(n-1) = risefac(n+1,6)/6! - risefac(n+1,4)/4! is for n >=1 also the number of independent components of a symmetric traceless tensor of rank 6 and dimension n. Here risefac is the rising factorial. Put a(0) = 0. - Wolfdieter Lang, Dec 10 2015

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 797.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

G.f.: x*(2-x) / (1-x)^7.
a(n) = binomial(n+5, n-1) + binomial(n+4, n-1) = 1/720*n*(n+11)*(n+4)*(n+3)*(n+2)*(n+1).
a(n) = binomial(n,6) + 2*binomial(n,5), n >= 5. - Zerinvary Lajos, Jul 26 2006
a(n+1) = A127672(12+n, n), n >= 0, where A127672 gives the coefficients of Chebyshev's C polynomials. See the Abramowitz-Stegun reference. - Wolfdieter Lang, Dec 10 2015
From G. C. Greubel, Aug 27 2019: (Start)
a(n) = (n+11)*Pochhammer(n, 5)/6!.
E.g.f.: x*(1440 +3240*x +1920*x^2 +420*x^3 +36*x^4 +x^5)*exp(x)/6!. (End)
From Amiram Eldar, Feb 17 2023: (Start)
Sum_{n>=1} 1/a(n) = 1303391/2134440.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4160*log(2)/77 - 78994697/2134440. (End)

Extensions

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 07 1999