A005584 Coefficients of Chebyshev polynomials.
2, 13, 49, 140, 336, 714, 1386, 2508, 4290, 7007, 11011, 16744, 24752, 35700, 50388, 69768, 94962, 127281, 168245, 219604, 283360, 361790, 457470, 573300, 712530, 878787, 1076103, 1308944, 1582240, 1901416, 2272424, 2701776, 3196578, 3764565, 4414137, 5154396
Offset: 1
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 797.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Milan Janjic, Two Enumerative Functions.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Richard K. Guy, Letter to N. J. A. Sloane, Feb 1988.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube.
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube. [Cached copy, May 15 2013]
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
- Index entries for sequences related to Chebyshev polynomials.
Programs
-
GAP
List([1..40], n-> (n+11)*Binomial(n+4,5)/6); # G. C. Greubel, Aug 27 2019
-
Magma
[n*(n+11)*(n+4)*(n+3)*(n+2)*(n+1)/720: n in [1..40]]; // Vincenzo Librandi, Jun 15 2011
-
Maple
[seq(binomial(n,6)+2*binomial(n,5), n=5..35)]; # Zerinvary Lajos, Jul 26 2006 A005584:=(-2+z)/(z-1)**7; # Simon Plouffe in his 1992 dissertation
-
Mathematica
Table[2*Binomial[n+4, 5] + Binomial[n+4, 6], {n,40}] (* Vladimir Joseph Stephan Orlovsky, Jun 14 2011, modified by G. C. Greubel, Aug 27 2019 *) Table[(n+11)*Pochhammer[n, 5]/6!, {n,40}] (* G. C. Greubel, Aug 27 2019 *)
-
PARI
a(n)=n*(n+11)*(n+4)*(n+3)*(n+2)*(n+1)/720 \\ Charles R Greathouse IV, Jun 14 2011
-
Sage
[(n+11)*rising_factorial(n,5)/factorial(6) for n in (1..40)] # G. C. Greubel, Aug 27 2019
Formula
G.f.: x*(2-x) / (1-x)^7.
a(n) = binomial(n+5, n-1) + binomial(n+4, n-1) = 1/720*n*(n+11)*(n+4)*(n+3)*(n+2)*(n+1).
a(n) = binomial(n,6) + 2*binomial(n,5), n >= 5. - Zerinvary Lajos, Jul 26 2006
a(n+1) = A127672(12+n, n), n >= 0, where A127672 gives the coefficients of Chebyshev's C polynomials. See the Abramowitz-Stegun reference. - Wolfdieter Lang, Dec 10 2015
From G. C. Greubel, Aug 27 2019: (Start)
a(n) = (n+11)*Pochhammer(n, 5)/6!.
E.g.f.: x*(1440 +3240*x +1920*x^2 +420*x^3 +36*x^4 +x^5)*exp(x)/6!. (End)
From Amiram Eldar, Feb 17 2023: (Start)
Sum_{n>=1} 1/a(n) = 1303391/2134440.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4160*log(2)/77 - 78994697/2134440. (End)
Extensions
More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 07 1999
Comments