cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000096 a(n) = n*(n+3)/2.

Original entry on oeis.org

0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 527, 560, 594, 629, 665, 702, 740, 779, 819, 860, 902, 945, 989, 1034, 1080, 1127, 1175, 1224, 1274, 1325, 1377, 1430, 1484, 1539, 1595, 1652, 1710, 1769
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is the maximal number of pieces that can be obtained by cutting an annulus with n cuts. See illustration. - Robert G. Wilson v
n(n-3)/2 (n >= 3) is the number of diagonals of an n-gon. - Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr)
n(n-3)/2 (n >= 4) is the degree of the third-smallest irreducible presentation of the symmetric group S_n (cf. James and Kerber, Appendix 1).
a(n) is also the multiplicity of the eigenvalue (-2) of the triangle graph Delta(n+1). (See p. 19 in Biggs.) - Felix Goldberg (felixg(AT)tx.technion.ac.il), Nov 25 2001
For n > 3, a(n-3) = dimension of the traveling salesman polytope T(n). - Benoit Cloitre, Aug 18 2002
Also counts quasi-dominoes (quasi-2-ominoes) on an n X n board. Cf. A094170-A094172. - Jon Wild, May 07 2004
Coefficient of x^2 in (1 + x + 2*x^2)^n. - Michael Somos, May 26 2004
a(n) is the number of "prime" n-dimensional polyominoes. A "prime" n-polyomino cannot be formed by connecting any other n-polyominoes except for the n-monomino and the n-monomino is not prime. E.g., for n=1, the 1-monomino is the line of length 1 and the only "prime" 1-polyominoes are the lines of length 2 and 3. This refers to "free" n-dimensional polyominoes, i.e., that can be rotated along any axis. - Bryan Jacobs (bryanjj(AT)gmail.com), Apr 01 2005
Solutions to the quadratic equation q(m, r) = (-3 +- sqrt(9 + 8(m - r))) / 2, where m - r is included in a(n). Let t(m) = the triangular number (A000217) less than some number k and r = k - t(m). If k is neither prime nor a power of two and m - r is included in A000096, then m - q(m, r) will produce a value that shares a divisor with k. - Andrew S. Plewe, Jun 18 2005
Sum_{k=2..n+1} 4/(k*(k+1)*(k-1)) = ((n+3)*n)/((n+2)*(n+1)). Numerator(Sum_{k=2..n+1} 4/(k*(k+1)*(k-1))) = (n+3)*n/2. - Alexander Adamchuk, Apr 11 2006
Number of rooted trees with n+3 nodes of valence 1, no nodes of valence 2 and exactly two other nodes. I.e., number of planted trees with n+2 leaves and exactly two branch points. - Theo Johnson-Freyd (theojf(AT)berkeley.edu), Jun 10 2007
If X is an n-set and Y a fixed 2-subset of X then a(n-2) is equal to the number of (n-2)-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
For n >= 1, a(n) is the number of distinct shuffles of the identity permutation on n+1 letters with the identity permutation on 2 letters (12). - Camillia Smith Barnes, Oct 04 2008
If s(n) is a sequence defined as s(1) = x, s(n) = kn + s(n-1) + p for n > 1, then s(n) = a(n-1)*k + (n-1)*p + x. - Gary Detlefs, Mar 04 2010
The only primes are a(1) = 2 and a(2) = 5. - Reinhard Zumkeller, Jul 18 2011
a(n) = m such that the (m+1)-th triangular number minus the m-th triangular number is the (n+1)-th triangular number: (m+1)(m+2)/2 - m(m+1)/2 = (n+1)(n+2)/2. - Zak Seidov, Jan 22 2012
For n >= 1, number of different values that Sum_{k=1..n} c(k)*k can take where the c(k) are 0 or 1. - Joerg Arndt, Jun 24 2012
On an n X n chessboard (n >= 2), the number of possible checkmate positions in the case of king and rook versus a lone king is 0, 16, 40, 72, 112, 160, 216, 280, 352, ..., which is 8*a(n-2). For a 4 X 4 board the number is 40. The number of positions possible was counted including all mirror images and rotations for all four sides of the board. - Jose Abutal, Nov 19 2013
If k = a(i-1) or k = a(i+1) and n = k + a(i), then C(n, k-1), C(n, k), C(n, k+1) are three consecutive binomial coefficients in arithmetic progression and these are all the solutions. There are no four consecutive binomial coefficients in arithmetic progression. - Michael Somos, Nov 11 2015
a(n-1) is also the number of independent components of a symmetric traceless tensor of rank 2 and dimension n >= 1. - Wolfdieter Lang, Dec 10 2015
Numbers k such that 8k + 9 is a square. - Juri-Stepan Gerasimov, Apr 05 2016
Let phi_(D,rho) be the average value of a generic degree D monic polynomial f when evaluated at the roots of the rho-th derivative of f, expressed as a polynomial in the averaged symmetric polynomials in the roots of f. [See the Wojnar et al. link] The "last" term of phi_(D,rho) is a multiple of the product of all roots of f; the coefficient is expressible as a polynomial h_D(N) in N:=D-rho. These polynomials are of the form h_D(N)= ((-1)^D/(D-1)!)*(D-N)*N^chi*g_D(N) where chi = (1 if D is odd, 0 if D is even) and g_D(N) is a monic polynomial of degree (D-2-chi). Then a(n) are the negated coefficients of the next to the highest order term in the polynomials N^chi*g_D(N), starting at D=3. - Gregory Gerard Wojnar, Jul 19 2017
For n >= 2, a(n) is the number of summations required to solve the linear regression of n variables (n-1 independent variables and 1 dependent variable). - Felipe Pedraza-Oropeza, Dec 07 2017
For n >= 2, a(n) is the number of sums required to solve the linear regression of n variables: 5 for two variables (sums of X, Y, X^2, Y^2, X*Y), 9 for 3 variables (sums of X1, X2, Y1, X1^2, X1*X2, X1*Y, X2^2, X2*Y, Y^2), and so on. - Felipe Pedraza-Oropeza, Jan 11 2018
a(n) is the area of a triangle with vertices at (n, n+1), ((n+1)*(n+2)/2, (n+2)*(n+3)/2), ((n+2)^2, (n+3)^2). - J. M. Bergot, Jan 25 2018
Number of terms less than 10^k: 1, 4, 13, 44, 140, 446, 1413, 4471, 14141, 44720, 141420, 447213, ... - Muniru A Asiru, Jan 25 2018
a(n) is also the number of irredundant sets in the (n+1)-path complement graph for n > 2. - Eric W. Weisstein, Apr 11 2018
a(n) is also the largest number k such that the largest Dyck path of the symmetric representation of sigma(k) has exactly n peaks, n >= 1. (Cf. A237593.) - Omar E. Pol, Sep 04 2018
For n > 0, a(n) is the number of facets of associahedra. Cf. A033282 and A126216 and their refinements A111785 and A133437 for related combinatorial and analytic constructs. See p. 40 of Hanson and Sha for a relation to projective spaces and string theory. - Tom Copeland, Jan 03 2021
For n > 0, a(n) is the number of bipartite graphs with 2n or 2n+1 edges, no isolated vertices, and a stable set of cardinality 2. - Christian Barrientos, Jun 13 2022
For n >= 2, a(n-2) is the number of permutations in S_n which are the product of two different transpositions of adjacent points. - Zbigniew Wojciechowski, Mar 31 2023
a(n) represents the optimal stop-number to achieve the highest running score for the Greedy Pig game with an (n-1)-sided die with a loss on a 1. The total at which one should stop is a(s-1), e.g. for a 6-sided die, one should pass the die at 20. See Sparks and Haran. - Nicholas Stefan Georgescu, Jun 09 2024

Examples

			G.f. = 2*x + 5*x^2 + 9*x^3 + 14*x^4 + 20*x^5 + 27*x^6 + 35*x^7 + 44*x^8 + 54*x^9 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 22.7, p. 797.
  • Norman Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993.
  • G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Maths. and its Appls., Vol. 16, Addison-Wesley, 1981, Reading, MA, U.S.A.
  • D. G. Kendall et al., Shape and Shape Theory, Wiley, 1999; see p. 4.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A007401. Column 2 of A145324. Column of triangle A014473, first skew subdiagonal of A033282, a diagonal of A079508.
Occurs as a diagonal in A074079/A074080, i.e., A074079(n+3, n) = A000096(n-1) for all n >= 2. Also A074092(n) = 2^n * A000096(n-1) after n >= 2.
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488.
Similar sequences are listed in A316466.

Programs

Formula

G.f.: A(x) = x*(2-x)/(1-x)^3. a(n) = binomial(n+1, n-1) + binomial(n, n-1).
Connection with triangular numbers: a(n) = A000217(n+1) - 1.
a(n) = a(n-1) + n + 1. - Bryan Jacobs (bryanjj(AT)gmail.com), Apr 01 2005
a(n) = 2*t(n) - t(n-1) where t() are the triangular numbers, e.g., a(5) = 2*t(5) - t(4) = 2*15 - 10 = 20. - Jon Perry, Jul 23 2003
a(-3-n) = a(n). - Michael Somos, May 26 2004
2*a(n) = A008778(n) - A105163(n). - Creighton Dement, Apr 15 2005
a(n) = C(3+n, 2) - C(3+n, 1). - Zerinvary Lajos, Dec 09 2005
a(n) = A067550(n+1) / A067550(n). - Alexander Adamchuk, May 20 2006
a(n) = A126890(n,1) for n > 0. - Reinhard Zumkeller, Dec 30 2006
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Paul Curtz, Jan 02 2008
Starting (2, 5, 9, 14, ...) = binomial transform of (2, 3, 1, 0, 0, 0, ...). - Gary W. Adamson, Jul 03 2008
For n >= 0, a(n+2) = b(n+1) - b(n), where b(n) is the sequence A005586. - K.V.Iyer, Apr 27 2009
A002262(a(n)) = n. - Reinhard Zumkeller, May 20 2009
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=1, a(n-1)=coeff(charpoly(A,x),x^(n-2)). - Milan Janjic, Jul 08 2010
a(n) = Sum_{k=1..n} (k+1)!/k!. - Gary Detlefs, Aug 03 2010
a(n) = n(n+1)/2 + n = A000217(n) + n. - Zak Seidov, Jan 22 2012
E.g.f.: F(x) = 1/2*x*exp(x)*(x+4) satisfies the differential equation F''(x) - 2*F'(x) + F(x) = exp(x). - Peter Bala, Mar 14 2012
a(n) = binomial(n+3, 2) - (n+3). - Robert G. Wilson v, Mar 15 2012
a(n) = A181971(n+1, 2) for n > 0. - Reinhard Zumkeller, Jul 09 2012
a(n) = A214292(n+2, 1). - Reinhard Zumkeller, Jul 12 2012
G.f.: -U(0) where U(k) = 1 - 1/((1-x)^2 - x*(1-x)^4/(x*(1-x)^2 - 1/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 27 2012
A023532(a(n)) = 0. - Reinhard Zumkeller, Dec 04 2012
a(n) = A014132(n,n) for n > 0. - Reinhard Zumkeller, Dec 12 2012
a(n-1) = (1/n!)*Sum_{j=0..n} binomial(n,j)*(-1)^(n-j)*j^n*(j-1). - Vladimir Kruchinin, Jun 06 2013
a(n) = 2n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = Sum_{i=2..n+1} i. - Wesley Ivan Hurt, Jun 28 2013
Sum_{n>0} 1/a(n) = 11/9. - Enrique Pérez Herrero, Nov 26 2013
a(n) = Sum_{i=1..n} (n - i + 2). - Wesley Ivan Hurt, Mar 31 2014
A023531(a(n)) = 1. - Reinhard Zumkeller, Feb 14 2015
For n > 0: a(n) = A101881(2*n-1). - Reinhard Zumkeller, Feb 20 2015
a(n) + a(n-1) = A008865(n+1) for all n in Z. - Michael Somos, Nov 11 2015
a(n+1) = A127672(4+n, n), n >= 0, where A127672 gives the coefficients of the Chebyshev C polynomials. See the Abramowitz-Stegun reference. - Wolfdieter Lang, Dec 10 2015
a(n) = (n+1)^2 - A000124(n). - Anton Zakharov, Jun 29 2016
Dirichlet g.f.: (zeta(s-2) + 3*zeta(s-1))/2. - Ilya Gutkovskiy, Jun 30 2016
a(n) = 2*A000290(n+3) - 3*A000217(n+3). - J. M. Bergot, Apr 04 2018
a(n) = Stirling2(n+2, n+1) - 1. - Peter Luschny, Jan 05 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/3 - 5/9. - Amiram Eldar, Jan 10 2021
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = 3.
Product_{n>=1} (1 - 1/a(n)) = 3*cos(sqrt(17)*Pi/2)/(4*Pi). (End)
Product_{n>=0} a(4*n+1)*a(4*n+4)/(a(4*n+2)*a(4*n+3)) = Pi/6. - Michael Jodl, Apr 05 2025

A176145 a(n) = n*(n-3)*(n^2-7*n+14)/8.

Original entry on oeis.org

0, 1, 5, 18, 49, 110, 216, 385, 638, 999, 1495, 2156, 3015, 4108, 5474, 7155, 9196, 11645, 14553, 17974, 21965, 26586, 31900, 37973, 44874, 52675, 61451, 71280, 82243, 94424, 107910, 122791, 139160, 157113, 176749, 198170, 221481, 246790, 274208, 303849
Offset: 3

Views

Author

Michel Lagneau, Apr 10 2010

Keywords

Comments

Number of points of intersection of diagonals of a general convex n-polygon. (both inside and outside the polygon).
n(n-3)/2 (n >= 3) is the number of diagonals of an n-gon (A080956). The number of points (inside or outside), distinct of tops, where these diagonals intersect is : (1/2)( n(n-3)/2)(n(n-3)/2 - 2(n-4) -1) = n(n-3)(n^2 - 7n + 14) / 8.

Examples

			For n=3, a(3) = 0 (no diagonals in triangle),
For n=4, a(4) = 1 (2 diagonals => 1 point of intersection),
For n=5, a(5) = 5 (5 diagonals => 5 points of intersection),
For n=6, a(6) = 18 (9 diagonals => 18 points of intersection).
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 797.

Crossrefs

Programs

  • Magma
    [n*(n-3)*(n^2 - 7*n + 14) / 8: n in [3..60]]; // Vincenzo Librandi, May 21 2011
    
  • Maple
    for n from 3 to 50 do: x:=n*(n-3)*(n^2 - 7*n +14)/8 : print(x):od:
  • Mathematica
    Table[n*(n - 3)*(n^2 - 7*n + 14)/8, {n, 3, 42}] (* Bobby Milazzo, Jun 24 2013 *)
    Drop[CoefficientList[Series[x^4(1+3x^2-x^3)/(1-x)^5,{x,0,50}],x],3] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,5,18,49},50] (* Harvey P. Dale, Mar 14 2022 *)
  • PARI
    vector(100,n,(n+2)*(n-1)*(n^2-3*n+4)/8) \\ Derek Orr, Jan 21 2015

Formula

G.f.: x^4*(1+3*x^2-x^3)/(1-x)^5. [Colin Barker, Jan 31 2012]
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) + a(n-5), with a(3)= 0, a(4)= 1, a(5)=5, a(6)= 18, a(7) = 49. [Bobby Milazzo, Jun 24 2013]
a(n) = Sum_{k=(n-3)..(n-2)*(n-3)/2} k. - J. M. Bergot, Jan 21 2015

Extensions

Edited by N. J. A. Sloane, Apr 19 2010

A121306 Array read by antidiagonals: a(m,n) = a(m,n-1)+a(m-1,n) but with initialization values a(0,0)=0, a(m>=1,0)=1, a(0,1)=1, a(0,n>1)=0.

Original entry on oeis.org

2, 2, 3, 2, 5, 4, 2, 7, 9, 5, 2, 9, 16, 14, 6, 2, 11, 25, 30, 20, 7, 2, 13, 36, 55, 50, 27, 8, 2, 15, 49, 91, 105, 77, 35, 9, 2, 17, 64, 140, 196, 182, 112, 44, 10, 19, 81, 204, 336, 378, 294, 156, 54, 100, 285, 540, 714, 672, 450, 210, 385, 825, 1254, 1386, 1122
Offset: 0

Views

Author

Thomas Wieder, Aug 04 2006, Aug 06 2006

Keywords

Comments

For a(1,0)=1, a(m>1,0)=0 and a(0,n>=0)=0 one gets Pascal's triangle A007318.

Examples

			Array begins
2 2 2 2 2 2 2 2 2 ...
3 5 7 9 11 13 15 17 19 ...
4 9 16 25 36 49 64 81 100 ...
5 14 30 55 91 140 204 285 385 ...
6 20 50 105 196 336 540 825 1210 ...
7 27 77 182 378 714 1254 2079 3289 ...
		

Crossrefs

Programs

  • Excel
    =Z(-1)S+ZS(-1). The very first row (not included into the table) contains the initialization values: a(0,1)=1, a(0,n>=2)=0. The very first column (not included into the table) contains the initialization values: a(m>=1,0)=1. The value a(0,0)=0 does not enter into the table.

Formula

a(m,n) = a(m,n-1)+a(m-1,n), a(0,0)=0, a(m>=1,0)=1, a(0,1)=1, a(0,n>1)=0.

Extensions

Edited by N. J. A. Sloane, Sep 15 2006

A244422 Quasi-Riordan triangle ((2-z)/(1-z), -z^2/(1-z)). Row reversed monic Chebyshev T-polynomials without vanishing columns.

Original entry on oeis.org

2, 1, 0, 1, -2, 0, 1, -3, 0, 0, 1, -4, 2, 0, 0, 1, -5, 5, 0, 0, 0, 1, -6, 9, -2, 0, 0, 0, 1, -7, 14, -7, 0, 0, 0, 0, 1, -8, 20, -16, 2, 0, 0, 0, 0, 1, -9, 27, -30, 9, 0, 0, 0, 0, 0, 1, -10, 35, -50, 25, -2, 0, 0, 0, 0, 0, 1, -11, 44, -77, 55, -11, 0, 0, 0, 0, 0, 0, 1, -12, 54, -112, 105, -36, 2, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Wolfdieter Lang, Aug 08 2014

Keywords

Comments

This is a signed version of the triangle A061896.
The coefficient table for the monic Chebyshev polynomials of the first kind R(n, x) = 2*T(n, x/2) is given in A127672. For the T-polynomials see A053120. The present table is obtained from the row reversed coefficient table A127672 by deleting all odd numbered columns which have only zeros, and appending in the rows numbered n >= 1 zeros in order to obtain a triangle. This becomes the quasi-Riordan triangle T = ((2-z)/(1-z), -z^2/(1-z)). This means that the o.g.f. of the row polynomials Rrev(n, x) := sqrt(x)^n*R(n, 1/sqrt(x)) = Sum_{k=0..n} T(n, k)*x^k have o.g.f. (2-z)/(1 - z + x*z^2) like for ordinary Riordan triangles. However this is not a Riordan triangle (or lower triangular infinite dimensional matrix) in the usual sense because it is not invertible. Therefore, this lower triangular matrix is not a member of the Riordan group.
The row sums give repeat(2,1,-1,-2,-1) which is A057079(n+1), n >= 0. The alternating row sums give the Lucas numbers A000032.

Examples

			The triangle T(n,k) begins:
  n\k  0   1   2     3    4     5  6   7  8  9 10 11
  0:   2
  1:   1   0
  2:   1  -2   0
  3:   1  -3   0     0
  4:   1  -4   2     0    0
  5:   1  -5   5     0    0     0
  6:   1  -6   9    -2    0     0  0
  7:   1  -7  14    -7    0     0  0   0
  8:   1  -8  20   -16    2     0  0   0  0
  9:   1  -9  27   -30    9     0  0   0  0  0
  10:  1 -10  35   -50   25    -2  0   0  0  0  0
  11:  1 -11  44   -77   55   -11  0   0  0  0  0  0
  ...
Rrev(3, x) = 1 - 3*x = sqrt(x)^3*R(3,1/sqrt(x)) = sqrt(x)^3*(-3/sqrt(x) + 1/sqrt(x)^3 ) = -3*x + 1.
Rrev(4, x) = 1 - 4*x + 2*x^2 = sqrt(x)^4*(2 - 4/sqrt(x)^2 + 1/sqrt(x)^4) = 2*x^2 - 4*x + 1.
Recurrence: T(4,1) = T(3, 1) - T(2, 0) = -3 -1 = -4.
		

Crossrefs

Formula

T(n,k) = [x^k] Rrev(n, x), k=0, 1, ..., n, with the row polynomials Rrev(n, x) = sqrt(x)^n*R(n,1/sqrt(x)), with R(n, x) given in A127672 (monic Chebyshev polynomials of the first kind).
O.g.f. row polynomials Rrev(n,x) = Sum_{k=0..n} T(n,k)*x^k: (2-z)/(1 - z + x*z^2) (quasi-Riordan).
O.g.f. for column number k entries with leading zeros: ((2-x)/(1-x))*(-x^2/(1-x))^k, k > = 0. See A054977, -A000027, A000096, -A005581, A005582, -A005583, A005584.
Recurrence: T(n,k) = T(n-1, k) - T(n-2, k-1), n >= k >= 1, T(n,k) = 0 if n < k, T(0,0) = 2, T(n,0) = 1 if n>=1, (Compare with A061896).
For n >= 1 the entries without trailing zeros are given by T(n,k) = (-1)^k*(n/(n-k))*binomial(n-k,k) where k=0..floor(n/2).

A264357 Array A(r, n) of number of independent components of a symmetric traceless tensor of rank r and dimension n, written as triangle T(n, r) = A(r, n-r+2), n >= 1, r = 2..n+1.

Original entry on oeis.org

0, 2, 0, 5, 2, 0, 9, 7, 2, 0, 14, 16, 9, 2, 0, 20, 30, 25, 11, 2, 0, 27, 50, 55, 36, 13, 2, 0, 35, 77, 105, 91, 49, 15, 2, 0, 44, 112, 182, 196, 140, 64, 17, 2, 0, 54, 156, 294, 378, 336, 204, 81, 19, 2, 0
Offset: 1

Views

Author

Wolfdieter Lang, Dec 10 2015

Keywords

Comments

A (totally) symmetric traceless tensor of rank r >= 2 and dimension n >= 1 is irreducible.
The array of the number of independent components of a rank r symmetric traceless tensor A(r, n), for r >= 2 and n >=1, is given by risefac(n,r)/r! - risefac(n,r-2)/(r-2)!, where the first term gives the number of independent components of a symmetric tensors of rank r (see a Dec 10 2015 comment under A135278) and the second term is the number of constraints from the tracelessness requirement. The tensor has to be traceless in each pair of indices.
The first rows of the array A, or the first columns (without the first r-2 zeros) of the triangle T are for r = 2..6: A000096, A005581, A005582, A005583, A005584.
Equals A115241 with the first column of positive integers removed. - Georg Fischer, Jul 26 2023

Examples

			The array A(r, n) starts:
   r\n 1 2  3   4   5    6    7     8     9    10 ...
   2:  0 2  5   9  14   20   27    35    44    54
   3:  0 2  7  16  30   50   77   112   156   210
   4:  0 2  9  25  55  105  182   294   450   660
   5:  0 2 11  36  91  196  378   672  1122  1782
   6:  0 2 13  49 140  336  714  1386  2508  4290
   7:  0 2 15  64 204  540 1254  2640  5148  9438
   8:  0 2 17  81 285  825 2079  4719  9867 19305
   9:  0 2 19 100 385 1210 3289  8008 17875 37180
  10:  0 2 21 121 506 1716 5005 13013 30888 68068
  ...
The triangle T(n, r) starts:
   n\r  2   3   4   5   6   7  8  9 10 11 ...
   1:   0
   2:   2   0
   3:   5   2   0
   4:   9   7   2   0
   5:  14  16   9   2   0
   6:  20  30  25  11   2   0
   7:  27  50  55  36  13   2  0
   8:  35  77 105  91  49  15  2  0
   9:  44 112 182 196 140  64 17  2  0
  10:  54 156 294 378 336 204 81 19  2  0
  ...
A(r, 1) = 0 , r >= 2, because a symmetric rank r tensor t of dimension one has one component t(1,1,...,1) (r 1's) and if the traces vanish then t vanishes.
A(3, 2) = 2 because a symmetric rank 3 tensor t with three indices taking values from 1 or 2 (n=2) has the four independent components t(1,1,1), t(1,1,2), t(1,2,2), t(2,2,2), and (invoking symmetry) the vanishing traces are Sum_{j=1..2} t(j,j,1) = 0 and Sum_{j=1..2} t(j,j,2) = 0. These are two constraints, which can be used to eliminate, say, t(1,1,1) and t(2,2,2), leaving 2 = A(3, 2) independent components, say, t(1,1,2) and t(1,2,2).
From _Peter Luschny_, Dec 14 2015: (Start)
The diagonals diag(n, k) start:
   k\n  0       1       2       3       4      5       6
   0:   0,      2,      9,     36,    140,   540,   2079, ... A007946
   1:   2,      7,     25,     91,    336,  1254,   4719, ... A097613
   2:   5,     16,     55,    196,    714,  2640,   9867, ... A051960
   3:   9,     30,    105,    378,   1386,  5148,  19305, ... A029651
   4:  14,     50,    182,    672,   2508,  9438,  35750, ... A051924
   5:  20,     77,    294,   1122,   4290, 16445,  63206, ... A129869
   6:  27,    112,    450,   1782,   7007, 27456, 107406, ... A220101
   7:  35,    156,    660,   2717,  11011, 44200, 176358, ... A265612
   8:  44,    210,    935,    4004, 16744, 68952, 281010, ... A265613
  A000096,A005581,A005582,A005583,A005584.
(End)
		

Crossrefs

Programs

  • Mathematica
    A[r_, n_] := Pochhammer[n, r]/r! - Pochhammer[n, r-2]/(r-2)!;
    T[n_, r_] := A[r, n-r+2];
    Table[T[n, r], {n, 1, 10}, {r, 2, n+1}] (* Jean-François Alcover, Jun 28 2019 *)
  • Sage
    A = lambda r, n: rising_factorial(n,r)/factorial(r) - rising_factorial(n,r-2)/factorial(r-2)
    for r in (2..10): [A(r,n) for n in (1..10)] # Peter Luschny, Dec 13 2015

Formula

T(n, r) = A(r, n-r+2) with the array A(r, n) = risefac(n,r)/r! - risefac(n,r-2)/(r-2)! where the rising factorial risefac(n,k) = Product_{j=0..k-1} (n+j) and risefac(n,0) = 1.
From Peter Luschny, Dec 14 2015: (Start)
A(n+2, n+1) = A007946(n-1) = CatalanNumber(n)*3*n*(n+1)/(n+2) for n>=0.
A(n+2, n+2) = A024482(n+2) = A097613(n+2) = CatalanNumber(n+1)*(3*n+4)/2 for n>=0.
A(n+2, n+3) = A051960(n+1) = CatalanNumber(n+1)*(3*n+5) for n>=0.
A(n+2, n+4) = A029651(n+2) = CatalanNumber(n+1)*(6*n+9) for n>=0.
A(n+2, n+5) = A051924(n+3) = CatalanNumber(n+2)*(3*n+7) for n>=0.
A(n+2, n+6) = A129869(n+4) = CatalanNumber(n+2)*(3*n+8)*(2*n+5)/(n+4) for n>=0.
A(n+2, n+7) = A220101(n+4) = CatalanNumber(n+3)*(3*(n+3)^2)/(n+5) for n>=0.
A(n+2, n+8) = CatalanNumber(n+4)*(n+3)*(3*n+10)/(2*n+12) for n>=0.
Let for n>=0 and k>=0 diag(n,k) = A(k+2,n+k+1) and G(n,k) = 2^(k+2*n)*Gamma((3-(-1)^k+2*k+4*n)/4)/(sqrt(Pi)*Gamma(k+n+0^k)) then
diag(n,0) = G(n,0)*(n*3)/(n+2),
diag(n,1) = G(n,1)*(3*n+4)/((n+1)*(n+2)),
diag(n,2) = G(n,2)*(3*n+5)/(n+2),
diag(n,3) = G(n,3)*3,
diag(n,4) = G(n,4)*(3*n+7),
diag(n,5) = G(n,5)*(3*n+8),
diag(n,6) = G(n,6)*3*(3+n)^2,
diag(n,7) = G(n,7)*(3+n)*(10+3*n). (End)

A191532 Triangle T(n,k) read by rows: T(n,n) = 2n+1, T(n,k)=k for k

Original entry on oeis.org

1, 0, 3, 0, 1, 5, 0, 1, 2, 7, 0, 1, 2, 3, 9, 0, 1, 2, 3, 4, 11, 0, 1, 2, 3, 4, 5, 13, 0, 1, 2, 3, 4, 5, 6, 15, 0, 1, 2, 3, 4, 5, 6, 7, 17, 0, 1, 2, 3, 4, 5, 6, 7, 8, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 21, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 25, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27
Offset: 0

Views

Author

Paul Curtz, Jun 05 2011

Keywords

Comments

We can build products of linear polynomials with these T(n,k) defining the absolute terms:
1+n = A000027(1+n) =2, 3, 4, 5, 6, 7,
n*(3+n)/2 = A000096(1+n) =2, 5, 9, 14, 20, 27,
n*(1+n)*(5+n)/6 = A005581(2+n) =2, 7, 16, 30, 50, 77,
n*(1+n)*(2+n)*(7+n)/24 = A005582(1+n) =2, 9, 25, 55, 105, 182,
n*(1+n)*(2+n)*(3+n)*(9+n)/120 = A005583(n) =2, 11, 36, 91, 196, 378,
n*(1+n)*(2+n)*(3+n)*(4+n)*(11+n)/720 = A005584(n)=2, 13, 49, 140, 336, 714,

Examples

			1;
0,3;
0,1,5;
0,1,2,7;
0,1,2,3,9;
0,1,2,3,4,11;
		

Crossrefs

Cf. A191302.

Formula

T(n,k) = A002262(n-1,k).
sum_{k=0..n} T(n,k) = A000217(1+n).
Showing 1-6 of 6 results.