A005598 a(n) = 1 + Sum_{i=1..n} (n-i+1)*phi(i).
1, 2, 4, 8, 14, 24, 36, 54, 76, 104, 136, 178, 224, 282, 346, 418, 498, 594, 696, 816, 944, 1084, 1234, 1406, 1586, 1786, 1998, 2228, 2470, 2740, 3018, 3326, 3650, 3994, 4354, 4738, 5134, 5566, 6016, 6490, 6980, 7510, 8052, 8636, 9240, 9868, 10518, 11214
Offset: 0
Examples
a(4) = 14 because of the 16 possible four-letter words from an alphabet of two letters, only AABB and BBAA are not possible interleaving orders for two arithmetic progressions. For n=7, the pattern BAAAABA gives a possible ordering for the two arithmetic progressions {A, A+a, A+2a, A+3a,...} and {B, B+b, B+2b, B+3b,...} if the system of inequalities {a>0, b>0, A<B, B < A+a, A+4a<B+b, B+b < A+5a, A+5a<B+2b} has a solution. (Note: A<B is included to preclude a fifth A-term from lying between the two B-terms; similarly, A+5a<B+2b is included to preclude a second B-term from lying between the final two A-terms.) The SemialgebraicComponents procedure gives the solution {A,a,B,b}={0,1,1/8,4}; thus BAAAABA is one of the 54 possible orders of length 7. - _John W. Layman_, Mar 30 2005
References
- L. Dorst and A. W. M. Smeulders, Discrete straight line segments: parameters, primitives and properties. Vision geometry (Hoboken, NJ, 1989), 45-62, Contemp. Math., 119, Amer. Math. Soc., Providence, RI, 1991.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- C. A. Berenstein and D. Lavine, A Geometric Approach to Subpixel Registration Accuracy, CVGIP 40, 1987, 334-360.
- C. A. Berenstein and D. Lavine, On the Number of Digital Straight Line Segments, IEEE PAMI, vol.10, no.6, 1988, 880-887
- J. Berstel and M. Pocchiola, A geometric proof of the enumeration formula for Sturmian words, Internat. J. Algeb. Comput., 3(3):349-355, 1993.
- Michelangelo Bucci, Alessandro De Luca, Amy Glen and Luca Q. Zamboni, A connection between palindromic and factor complexity using return words, arXiv:0802.1332 [math.CO], 2008.
- Aldo de Luca and Stefano Varricchio, Finiteness and regularity in semigroups and formal languages, Monographs in Theoretical Computer Science. An EATCS Series. Springer-Verlag, Berlin, 1999. x+240 pp. ISBN: 3-540-63771-0 MR1696498 (2000g:68001). See p. 25.
- L. Dorst, Discrete Straight Line Segments: Parameters, Primitives and Properties, Ph. D. Dissertation, Delft Univ. Technology, 1986. See p. 85.
- L. Dorst and A. W. M. Smeulders, Discrete Representation of Straight Lines, IEEE PAMI-6, no.4, 1984, pp. 450-463.
- F. Mignosi, On the Number of Factors of Sturmian Words, Theor. Comput. Sci. 82(1): 71-84 (1991)
Programs
-
Haskell
a005598 n = 1 + sum (zipWith (*) [n, n - 1 .. 1] a000010_list) -- Reinhard Zumkeller, Apr 14 2013
-
Magma
A005598:= func< n | n eq 0 select 1 else 1 +(&+[(n-j+1)*EulerPhi(j): j in [1..n]]) >; [A005598(n): n in [0..60]]; // G. C. Greubel, Dec 07 2022
-
Maple
f:= m -> add((m-i+1)*phi(i),i=1..m)+1; (Jamet)
-
Mathematica
Accumulate@Accumulate@EulerPhi@Range[0,100]+1 (* Vladimir Joseph Stephan Orlovsky, Apr 21 2011 *) Nest[Accumulate[#]&,EulerPhi[Range[0,50]],2]+1 (* Harvey P. Dale, Feb 07 2015 *)
-
PARI
a(n) = 1 + sum(i=1, n, (n-i+1)*eulerphi(i)); \\ Michel Marcus, Aug 04 2016
-
SageMath
@CachedFunction def A005598(n): return 1 + sum( (n-j+1)*euler_phi(j) for j in range(1,n+1) ) [A005598(n) for n in range(61)] # G. C. Greubel, Dec 07 2022
Formula
a(n) = 2*A049703(n) for n >= 1.
a(n) = Sum_{i=0..n} A049695(i,n-i). - Clark Kimberling
Asymptotically, a(n) behaves like n^3/Pi^2. - Leo Dorst (leo(AT)science.uva.nl), Apr 02 2007
G.f.: 1/(1 - x) + (1/(1 - x)^2)*Sum_{k>=1} mu(k)*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Mar 16 2017
Extensions
Extended by John W. Layman, Mar 30 2005
More terms from Emeric Deutsch, Feb 04 2006
Entry revised by N. J. A. Sloane, Apr 04 2007
Minor English revisions by Jeffrey Shallit, Aug 04 2016
Comments