cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005598 a(n) = 1 + Sum_{i=1..n} (n-i+1)*phi(i).

Original entry on oeis.org

1, 2, 4, 8, 14, 24, 36, 54, 76, 104, 136, 178, 224, 282, 346, 418, 498, 594, 696, 816, 944, 1084, 1234, 1406, 1586, 1786, 1998, 2228, 2470, 2740, 3018, 3326, 3650, 3994, 4354, 4738, 5134, 5566, 6016, 6490, 6980, 7510, 8052, 8636, 9240, 9868, 10518, 11214
Offset: 0

Views

Author

Keywords

Comments

Number of possible interleaving orders for n consecutive distinct values from two arithmetic progressions. ABABBBA is impossible, for example, because "ABA" implies that the spacing between B's must be greater than 1/2 the spacing between A's. But "ABBBA" implies that the B-spacing must be less than 1/2 the A-spacing. - Allan C. Wechsler, Mar 16 2005. Since the interchange of A's and B's gives essentially the same order pattern, all terms will be even for n>0.
The SemialgebraicComponents procedure in the Algebra`AlgebraicInequalities` package of Mathematica may be used to determine whether a particular pattern is possible. - John W. Layman, Mar 30 2005
Also, "digital lines": number of straight binary strings of length n [Dorst]. This was the original source for this sequence.
Also, the number of finite Sturmian words of length n. The considered orders are exactly the balanced words, which have been proved to be the factors of Sturmian sequences. An explicit formula was exhibited by Mignosi in 1991. Berstel and Pocchiola gave a geometric proof of this, using Euler's function for counting partitions of a unit cube. - Damien Jamet (jamet(AT)lirmm.fr), Apr 01 2005
The first difference of a(n) is the number of 'special' words, prefix of two Sturmian words of length n+1; see A002088. The second difference of a(n) is the number of palindromic 'bispecial' words, prefix and suffix of two Sturmian words of length n+1; see A000010. - Fred Lunnon, Sep 05 2010
Conjectured to be the number of regions in a Farey fan of order n. See A360042 for further details. - Scott R. Shannon, Jan 24 2023

Examples

			a(4) = 14 because of the 16 possible four-letter words from an alphabet of two letters, only AABB and BBAA are not possible interleaving orders for two arithmetic progressions.
For n=7, the pattern BAAAABA gives a possible ordering for the two arithmetic progressions {A, A+a, A+2a, A+3a,...} and {B, B+b, B+2b, B+3b,...} if the system of inequalities {a>0, b>0, A<B, B < A+a, A+4a<B+b, B+b < A+5a, A+5a<B+2b} has a solution. (Note: A<B is included to preclude a fifth A-term from lying between the two B-terms; similarly, A+5a<B+2b is included to preclude a second B-term from lying between the final two A-terms.) The SemialgebraicComponents procedure gives the solution {A,a,B,b}={0,1,1/8,4}; thus BAAAABA is one of the 54 possible orders of length 7. - _John W. Layman_, Mar 30 2005
		

References

  • L. Dorst and A. W. M. Smeulders, Discrete straight line segments: parameters, primitives and properties. Vision geometry (Hoboken, NJ, 1989), 45-62, Contemp. Math., 119, Amer. Math. Soc., Providence, RI, 1991.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a005598 n = 1 + sum (zipWith (*) [n, n - 1 .. 1] a000010_list)
    -- Reinhard Zumkeller, Apr 14 2013
    
  • Magma
    A005598:= func< n | n eq 0 select 1 else 1 +(&+[(n-j+1)*EulerPhi(j): j in [1..n]]) >;
    [A005598(n): n in [0..60]]; // G. C. Greubel, Dec 07 2022
    
  • Maple
    f:= m -> add((m-i+1)*phi(i),i=1..m)+1; (Jamet)
  • Mathematica
    Accumulate@Accumulate@EulerPhi@Range[0,100]+1 (* Vladimir Joseph Stephan Orlovsky, Apr 21 2011 *)
    Nest[Accumulate[#]&,EulerPhi[Range[0,50]],2]+1 (* Harvey P. Dale, Feb 07 2015 *)
  • PARI
    a(n) = 1 + sum(i=1, n, (n-i+1)*eulerphi(i)); \\ Michel Marcus, Aug 04 2016
    
  • SageMath
    @CachedFunction
    def A005598(n): return 1 + sum( (n-j+1)*euler_phi(j) for j in range(1,n+1) )
    [A005598(n) for n in range(61)] # G. C. Greubel, Dec 07 2022

Formula

a(n) = 2*A049703(n) for n >= 1.
a(n) = Sum_{i=0..n} A049695(i,n-i). - Clark Kimberling
Asymptotically, a(n) behaves like n^3/Pi^2. - Leo Dorst (leo(AT)science.uva.nl), Apr 02 2007
G.f.: 1/(1 - x) + (1/(1 - x)^2)*Sum_{k>=1} mu(k)*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Mar 16 2017
a(n) = 1 + (n+1)*A002088(n) - A011755(n). - G. C. Greubel, Dec 07 2022

Extensions

Extended by John W. Layman, Mar 30 2005
More terms from Emeric Deutsch, Feb 04 2006
Entry revised by N. J. A. Sloane, Apr 04 2007
Minor English revisions by Jeffrey Shallit, Aug 04 2016