cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005667 Numerators of continued fraction convergents to sqrt(10).

Original entry on oeis.org

1, 3, 19, 117, 721, 4443, 27379, 168717, 1039681, 6406803, 39480499, 243289797, 1499219281, 9238605483, 56930852179, 350823718557, 2161873163521, 13322062699683, 82094249361619, 505887558869397, 3117419602578001, 19210405174337403, 118379850648602419
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A005668(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 10*b^2 = -1, a(2*n) with b(2*n) := A005668(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 10*b^2 = +1 (cf. Emerson reference).
Bisection: a(2*n) = T(n,19) = A078986(n), n >= 0 and a(2*n+1) = 3*S(2*n, 2*sqrt(10)), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. See A053120, resp. A049310.
The initial 1 corresponds to a denominator 0 in A005668. But according to standard conventions, a continued fraction starts with b(0) = integer part of the number, and the sequence of convergents p(n)/q(n) start with (p(0),q(0)) = (b(0),1). A fraction 1/0 has no mathematical meaning, the only justification is that initial terms p(-1) = 1, q(-1) = 0 are consistent with the recurrent relations p(n) = b(n)*p(n-1) + b(n-2) and the same for q(n). - M. F. Hasler, Nov 02 2019

Examples

			G.f. = 1 + 3*x + 19*x^2 + 117*x^3 + 721*x^4 + 4443*x^5 + 27379*x^6 + ... - _Michael Somos_, Jul 14 2018
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A010467, A040006, A084134, A005668 (denominators).

Programs

  • Magma
    I:=[1, 3]; [n le 2 select I[n] else 6*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 09 2013
    
  • Maple
    A005667:=(-1+3*z)/(-1+6*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Join[{1},Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[10],n]]],{n,1,30}]] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    CoefficientList[Series[(1-3x)/(1-6x-x^2), {x,0,30}], x] (* Vincenzo Librandi, Jun 09 2013 *)
    Join[{1},Numerator[Convergents[Sqrt[10],30]]] (* or *) LinearRecurrence[ {6,1},{1,3},30] (* Harvey P. Dale, Aug 22 2016 *)
    a[ n_] := (-I)^n ChebyshevT[ n, 3 I]; (* Michael Somos, Jul 14 2018 *)
    LucasL[Range[0,30], 6]/2 (* G. C. Greubel, Jun 06 2019 *)
  • PARI
    a(n)=([0,1;1,6]^n*[1;3])[1,1] \\ Charles R Greathouse IV, Jun 11 2015
    
  • Sage
    ((1-3*x)/(1-6*x-x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 06 2019

Formula

a(n) = 6*a(n-1) + a(n-2).
G.f.: (1-3*x)/(1-6*x-x^2).
a(n) = ((-i)^n)*T(n, 3*i) with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1.
From Paul Barry, Nov 15 2003: (Start)
Binomial transform of A084132.
E.g.f.: exp(3*x)*cosh(sqrt(10)*x).
a(n) = ((3+sqrt(10))^n + (3-sqrt(10))^n)/2.
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k) * 10^k * 3^(n-2*k). (End)
a(n) = (-1)^n * a(-n) for all n in Z. - Michael Somos, Jul 14 2018 [This refers to the sequence extended to negative indices according to the recurrence relation, but not to the sequence as it is currently defined. - M. F. Hasler, Nov 02 2019]
a(n) = Lucas(n,6)/2, Lucas polynomial, L(n,x), evaluated at x = 6. - G. C. Greubel, Jun 06 2019

Extensions

Chebyshev comments from Wolfdieter Lang, Jan 10 2003