A005667 Numerators of continued fraction convergents to sqrt(10).
1, 3, 19, 117, 721, 4443, 27379, 168717, 1039681, 6406803, 39480499, 243289797, 1499219281, 9238605483, 56930852179, 350823718557, 2161873163521, 13322062699683, 82094249361619, 505887558869397, 3117419602578001, 19210405174337403, 118379850648602419
Offset: 0
Examples
G.f. = 1 + 3*x + 19*x^2 + 117*x^3 + 721*x^4 + 4443*x^5 + 27379*x^6 + ... - _Michael Somos_, Jul 14 2018
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242, Thm. 1, p. 233.
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- Tian-Xiao He and Peter J.-S. Shiue, Identities for linear recursive sequences of order 2, Elect. Res. Archive (2021) Vol. 29, No. 5, 3489-3507.
- Tanya Khovanova, Recursive Sequences
- Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, and Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d)), arXiv:1904.13002 [math.NT], 2019.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (6,1).
Programs
-
Magma
I:=[1, 3]; [n le 2 select I[n] else 6*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 09 2013
-
Maple
A005667:=(-1+3*z)/(-1+6*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
Join[{1},Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[10],n]]],{n,1,30}]] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *) CoefficientList[Series[(1-3x)/(1-6x-x^2), {x,0,30}], x] (* Vincenzo Librandi, Jun 09 2013 *) Join[{1},Numerator[Convergents[Sqrt[10],30]]] (* or *) LinearRecurrence[ {6,1},{1,3},30] (* Harvey P. Dale, Aug 22 2016 *) a[ n_] := (-I)^n ChebyshevT[ n, 3 I]; (* Michael Somos, Jul 14 2018 *) LucasL[Range[0,30], 6]/2 (* G. C. Greubel, Jun 06 2019 *)
-
PARI
a(n)=([0,1;1,6]^n*[1;3])[1,1] \\ Charles R Greathouse IV, Jun 11 2015
-
Sage
((1-3*x)/(1-6*x-x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 06 2019
Formula
a(n) = 6*a(n-1) + a(n-2).
G.f.: (1-3*x)/(1-6*x-x^2).
a(n) = ((-i)^n)*T(n, 3*i) with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1.
From Paul Barry, Nov 15 2003: (Start)
Binomial transform of A084132.
E.g.f.: exp(3*x)*cosh(sqrt(10)*x).
a(n) = ((3+sqrt(10))^n + (3-sqrt(10))^n)/2.
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k) * 10^k * 3^(n-2*k). (End)
a(n) = (-1)^n * a(-n) for all n in Z. - Michael Somos, Jul 14 2018 [This refers to the sequence extended to negative indices according to the recurrence relation, but not to the sequence as it is currently defined. - M. F. Hasler, Nov 02 2019]
a(n) = Lucas(n,6)/2, Lucas polynomial, L(n,x), evaluated at x = 6. - G. C. Greubel, Jun 06 2019
Extensions
Chebyshev comments from Wolfdieter Lang, Jan 10 2003
Comments