cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005686 Number of Twopins positions.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 8, 9, 12, 14, 18, 22, 27, 34, 41, 52, 63, 79, 97, 120, 149, 183, 228, 280, 348, 429, 531, 657, 811, 1005, 1240, 1536, 1897, 2347, 2902, 3587, 4438, 5484, 6785, 8386, 10372, 12824, 15856, 19609, 24242, 29981, 37066, 45837
Offset: 0

Views

Author

Keywords

References

  • R. K. Guy, "Anyone for Twopins?" in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001687.

Programs

  • Magma
    I:=[1,1,1,1,1]; [0] cat [n le 5 select I[n] else Self(n-2)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Jan 19 2016
  • Maple
    A005686 := -(z+1)*(z**3+z+1)/(-1+z**2+z**5); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence except for the initial 1's
    a := proc(n): if n = 0 then 0 else add(binomial(floor((n+3*k-4)/5), k), k=0..floor((n-1)/2)) fi: end: seq(a(n), n=0..54); # Johannes W. Meijer, Aug 05 2013
  • Mathematica
    nn=54; CoefficientList[Series[(x+x^2)/(1-x^2-x^5),{x,0,nn}],x]  (* Geoffrey Critzer, Apr 28 2013 *)
    m = 5; For[n = 0, n < m, n++, a[n] = 1]; For[n = m, n < 51, n++, a[n] = a[n - m] + a[n - 2]]; Table[a[n], {n, 0, 50}] (*Sergio Falcon, Nov 12 2015 *)
    Join[{0}, LinearRecurrence[{0, 1, 0, 0, 1}, {1, 1, 1, 1, 1}, 60]] (* Vincenzo Librandi, Jan 19 2016 *)
  • PARI
    a(n)=if(n<0,polcoeff((x^3+x^4)/(1+x^3-x^5)+x^-n*O(x),-n),polcoeff((x+x^2)/(1-x^2-x^5)+x^n*O(x),n)) /* Michael Somos, Jul 15 2004 */
    
  • PARI
    a(n)=sum(k=0,(n-1)\2,binomial((n+3*k-4)\5,k))
    

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(floor((n+3k-3)/5), k). - Paul Barry, Jul 10 2004
G.f.: (x+x^2)/(1-x^2-x^5). - Ralf Stephan, Apr 21 2004
a(n) = A001687(n)+A001687(n-1). - Ralf Stephan, Apr 21 2004
a(n) = a(n-2) + a(n-5). - Michael Somos, Jul 15 2004
a(n+1) = Sum_{k=0..floor(n/5)} A065941(n-4*k, n-5*k). - Johannes W. Meijer, Aug 05 2013

Extensions

More terms from Paul Barry, Jul 10 2004