cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A001687 a(n) = a(n-2) + a(n-5).

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 3, 2, 4, 4, 5, 7, 7, 11, 11, 16, 18, 23, 29, 34, 45, 52, 68, 81, 102, 126, 154, 194, 235, 296, 361, 450, 555, 685, 851, 1046, 1301, 1601, 1986, 2452, 3032, 3753, 4633, 5739, 7085, 8771, 10838, 13404, 16577, 20489, 25348, 31327
Offset: 0

Views

Author

N. J. A. Sloane, following a suggestion from Robert G. Wilson v

Keywords

Comments

a(n+1) is the number of compositions of n into parts 2 and 5. [Joerg Arndt, Mar 15 2013]

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005686.

Programs

  • Maple
    A001687:=-z/(-1+z**2+z**5); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[x/(1-x^2-x^5),{x,0,60}],x] (* or *) Nest[ Append[#,#[[-5]]+#[[-2]]]&, {0,1,0,1,0}, 60]  (* Harvey P. Dale, Apr 06 2011 *)
    LinearRecurrence[{0, 1, 0, 0, 1}, {0, 1, 0, 1, 0}, 100] (* T. D. Noe, Aug 09 2012 *)
  • Maxima
    a(n):=sum(if mod(n-5*k,3)=0 then binomial(k,(5*k-n)/3) else 0,k,1,n); /* Vladimir Kruchinin, May 24 2011 */
  • PARI
    a(n)=if(n<0,polcoeff(x^4/(1+x^3-x^5)+x^-n*O(x),-n),polcoeff(x/(1-x^2-x^5)+x^n*O(x),n)) /* Michael Somos, Jul 15 2004 */
    

Formula

G.f.: x/(1-x^2-x^5).
G.f. A(x) satisfies 1+x^4*A(x) = 1/(1-x^5-x^7-x^9-....). - Jon Perry, Jul 04 2004
G.f.: -x/( x^5 - 1 + 5*x^2/Q(0) ) where Q(k) = x + 5 + k*(x+1) - x*(k+1)*(k+6)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 15 2013

A005687 Number of Twopins positions.

Original entry on oeis.org

1, 2, 4, 6, 9, 14, 22, 36, 57, 90, 139, 214, 329, 506, 780, 1200, 1845, 2830, 4337, 6642, 10170, 15572, 23838, 36486, 55828, 85408, 130641, 199814, 305599, 467366, 714735, 1092980, 1671335, 2555650, 3907781, 5975202, 9136288, 13969560, 21359528
Offset: 7

Views

Author

Keywords

References

  • R. K. Guy, ``Anyone for Twopins?,'' in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    a:= n-> (Matrix(10, (i,j)-> if (i=j-1) then 1 elif j=1 then [2,0,-2,1,2,-2,0,0,0,-1][i] else 0 fi)^n)[1,8]: seq(a(n), n=7..70); # Alois P. Heinz, Aug 14 2008
  • Mathematica
    LinearRecurrence[{2, 0, -2, 1, 2, -2, 0, 0, 0, -1}, {1, 2, 4, 6, 9, 14, 22, 36, 57, 90}, 40] (* Jean-François Alcover, Nov 12 2015 *)

Formula

G.f.: x^7/((1-x^2-x^5)*(1-2*x+x^2-x^5)). - Simon Plouffe in his 1992 dissertation.
2*a(n) = A005253(n-2) - A005686(n). - R. J. Mathar, May 29 2019

Extensions

More terms from Alois P. Heinz, Aug 14 2008

A242763 a(n) = 1 for n <= 7; a(n) = a(n-5) + a(n-7) for n>7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 7, 8, 9, 9, 12, 12, 15, 16, 17, 21, 21, 27, 28, 32, 37, 38, 48, 49, 59, 65, 70, 85, 87, 107, 114, 129, 150, 157, 192, 201, 236, 264, 286, 342, 358, 428, 465, 522, 606, 644, 770, 823, 950, 1071, 1166, 1376
Offset: 1

Views

Author

Keywords

Comments

Generalized Fibonacci growth sequence using i = 2 as maturity period, j = 5 as conception period, and k = 2 as growth factor.
Maturity period is the number of periods that a Fibonacci tree node needs for being able to start developing branches. Conception period is the number of periods in a Fibonacci tree node needed to develop new branches since its maturity. Growth factor is the number of additional branches developed by a Fibonacci tree node, plus 1, and equals the base of the exponential series related to the given tree if maturity factor would be zero. Standard Fibonacci would use 1 as maturity period, 1 as conception period, and 2 as growth factor as the series becomes equal to 2^n with a maturity period of 0. Related to Lucas sequences.

Examples

			For n = 13 the a(13) = a(8) + a(6) = 2 + 1 = 3.
		

Crossrefs

Cf. A000079 (i = 0, j = 1, k = 2), A000244 (i = 0, j = 1, k = 3), A000302 (i = 0, j = 1, k = 4), A000351 (i = 0, j = 1, k = 5), A000400 (i = 0, j = 1, k = 6), A000420 (i = 0, j = 1, k = 7), A001018 (i = 0, j = 1, k = 8), A001019 (i = 0, j = 1, k = 9), A011557 (i = 0, j = 1, k = 10), A001020 (i = 0, j = 1, k = 11), A001021 (i = 0, j = 1, k = 12), A016116 (i = 0, j = 2, k = 2), A108411 (i = 0, j = 2, k = 3), A213173 (i = 0, j = 2, k = 4), A074872 (i = 0, j = 2, k = 5), A173862 (i = 0, j = 3, k = 2), A127975 (i = 0, j = 3, k = 3), A200675 (i = 0, j = 4, k = 2), A111575 (i = 0, j = 4, k = 3), A000045 (i = 1, j = 1, k = 2), A001045 (i = 1, j = 1, k = 3), A006130 (i = 1, j = 1, k = 4), A006131 (i = 1, j = 1, k = 5), A015440 (i = 1, j = 1, k = 6), A015441 (i = 1, j = 1, k = 7), A015442 (i = 1, j = 1, k = 8), A015443 (i = 1, j = 1, k = 9), A015445 (i = 1, j = 1, k = 10), A015446 (i = 1, j = 1, k = 11), A015447 (i = 1, j = 1, k = 12), A000931 (i = 1, j = 2, k = 2), A159284 (i = 1, j = 2, k = 3), A238389 (i = 1, j = 2, k = 4), A097041 (i = 1, j = 2, k = 10), A079398 (i = 1, j = 3, k = 2), A103372 (i = 1, j = 4, k = 2), A103373 (i = 1, j = 5, k = 2), A103374 (i = 1, j = 6, k = 2), A000930 (i = 2, j = 1, k = 2), A077949 (i = 2, j = 1, k = 3), A084386 (i = 2, j = 1, k = 4), A089977 (i = 2, j = 1, k = 5), A178205 (i = 2, j = 1, k = 11), A103609 (i = 2, j = 2, k = 2), A077953 (i = 2, j = 2, k = 3), A226503 (i = 2, j = 3, k = 2), A122521 (i = 2, j = 6, k = 2), A003269 (i = 3, j = 1, k = 2), A052942 (i = 3, j = 1, k = 3), A005686 (i = 3, j = 2, k = 2), A237714 (i = 3, j = 2, k = 3), A238391 (i = 3, j = 2, k = 4), A247049 (i = 3, j = 3, k = 2), A077886 (i = 3, j = 3, k = 3), A003520 (i = 4, j = 1, k = 2), A108104 (i = 4, j = 2, k = 2), A005708 (i = 5, j = 1, k = 2), A237716 (i = 5, j = 2, k = 3), A005709 (i = 6, j = 1, k = 2), A122522 (i = 6, j = 2, k = 2), A005710 (i = 7, j = 1, k = 2), A237718 (i = 7, j = 2, k = 3), A017903 (i = 8, j = 1, k = 2).

Programs

  • Magma
    [n le 7 select 1 else Self(n-5)+Self(n-7): n in [1..70]]; // Vincenzo Librandi, Nov 30 2016
    
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1}, 70] (*  or *)
    CoefficientList[ Series[(1+x+x^2+x^3+x^4)/(1-x^5-x^7), {x, 0, 70}], x] (* Robert G. Wilson v, Nov 25 2016 *)
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,a+c}; NestList[nxt,{1,1,1,1,1,1,1},70][[;;,1]] (* Harvey P. Dale, Oct 22 2024 *)
  • PARI
    Vec(x*(1+x+x^2+x^3+x^4)/((1-x+x^2)*(1+x-x^3-x^4-x^5)) + O(x^100)) \\ Colin Barker, Oct 27 2016
    
  • SageMath
    @CachedFunction # a = A242763
    def a(n): return 1 if n<8 else a(n-5) +a(n-7)
    [a(n) for n in range(1,76)] # G. C. Greubel, Oct 23 2024

Formula

Generic a(n) = 1 for n <= i+j; a(n) = a(n-j) + (k-1)*a(n-(i+j)) for n>i+j where i = maturity period, j = conception period, k = growth factor.
G.f.: x*(1+x+x^2+x^3+x^4) / ((1-x+x^2)*(1+x-x^3-x^4-x^5)). - Colin Barker, Oct 09 2016
Generic g.f.: x*(Sum_{l=0..j-1} x^l) / (1-x^j-(k-1)*x^(i+j)), with i > 0, j > 0 and k > 1.
Showing 1-3 of 3 results.