A005716 Coefficient of x^8 in expansion of (1+x+x^2)^n.
1, 15, 90, 357, 1107, 2907, 6765, 14355, 28314, 52624, 93093, 157950, 258570, 410346, 633726, 955434, 1409895, 2040885, 2903428, 4065963, 5612805, 7646925, 10293075, 13701285, 18050760, 23554206, 30462615, 39070540, 49721892, 62816292, 78816012, 98253540
Offset: 4
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 4..1000
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Trinomial Coefficient
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Programs
-
Magma
I:=[1, 15, 90, 357, 1107, 2907, 6765, 14355, 28314]; [n le 9 select I[n] else 9*Self(n-1)-36*Self(n-2)+84*Self(n-3)-126*Self(n-4)+126*Self(n-5)-84*Self(n-6)+36*Self(n-7)-9*Self(n-8)+Self(n-9): n in [1..40]]; // Vincenzo Librandi, Jun 16 2012
-
Magma
/* By definition: */ P
:=PolynomialRing(Integers()); [ Coefficients((1+x+x^2)^n)[9]: n in [4..32] ]; // Bruno Berselli, Jun 17 2012 -
Maple
A005716:=-(6*z-9*z**2+3*z**3+1)/(z-1)**9; # Conjectured by Simon Plouffe in his 1992 dissertation. A005716 := n -> GegenbauerC(`if`(8
A005716(n)), n=4..20); # Peter Luschny, May 10 2016 -
Mathematica
CoefficientList[Series[(1+6*x-9*x^2+3*x^3)/(1-x)^9,{x,0,40}],x] (* Vincenzo Librandi, Jun 16 2012 *)
Formula
a(n) = binomial(n+1, 5)*(n^2+23*n-84)*(n+10)/336, n >= 4.
G.f.: (x^4)*(1+6*x-9*x^2+3*x^3)/(1-x)^9. (Numerator polynomial is N3(8, x) from A063420).
a(n) = A027907(n, 8), n >= 4 (ninth column of trinomial coefficients).
a(n) = A111808(n,8) for n>7. - Reinhard Zumkeller, Aug 17 2005
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9). Vincenzo Librandi, Jun 16 2012
a(n) = binomial(n,4) + 10*binomial(n,5) + 15*binomial(n,6) + 7*binomial(n,7) + binomial(n,8) (see our comment in A026729). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
a(n) = GegenbauerC(N, -n, -1/2) where N = 8 if 8Peter Luschny, May 10 2016
Extensions
More terms from Vladeta Jovovic, Oct 02 2000