cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005716 Coefficient of x^8 in expansion of (1+x+x^2)^n.

Original entry on oeis.org

1, 15, 90, 357, 1107, 2907, 6765, 14355, 28314, 52624, 93093, 157950, 258570, 410346, 633726, 955434, 1409895, 2040885, 2903428, 4065963, 5612805, 7646925, 10293075, 13701285, 18050760, 23554206, 30462615, 39070540, 49721892, 62816292, 78816012, 98253540
Offset: 4

Views

Author

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[1, 15, 90, 357, 1107, 2907, 6765, 14355, 28314]; [n le 9 select I[n] else 9*Self(n-1)-36*Self(n-2)+84*Self(n-3)-126*Self(n-4)+126*Self(n-5)-84*Self(n-6)+36*Self(n-7)-9*Self(n-8)+Self(n-9): n in [1..40]]; // Vincenzo Librandi, Jun 16 2012
    
  • Magma
    /* By definition: */ P:=PolynomialRing(Integers()); [ Coefficients((1+x+x^2)^n)[9]: n in [4..32] ]; // Bruno Berselli, Jun 17 2012
  • Maple
    A005716:=-(6*z-9*z**2+3*z**3+1)/(z-1)**9; # Conjectured by Simon Plouffe in his 1992 dissertation.
    A005716 := n -> GegenbauerC(`if`(8A005716(n)), n=4..20); # Peter Luschny, May 10 2016
  • Mathematica
    CoefficientList[Series[(1+6*x-9*x^2+3*x^3)/(1-x)^9,{x,0,40}],x] (* Vincenzo Librandi, Jun 16 2012 *)

Formula

a(n) = binomial(n+1, 5)*(n^2+23*n-84)*(n+10)/336, n >= 4.
G.f.: (x^4)*(1+6*x-9*x^2+3*x^3)/(1-x)^9. (Numerator polynomial is N3(8, x) from A063420).
a(n) = A027907(n, 8), n >= 4 (ninth column of trinomial coefficients).
a(n) = A111808(n,8) for n>7. - Reinhard Zumkeller, Aug 17 2005
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9). Vincenzo Librandi, Jun 16 2012
a(n) = binomial(n,4) + 10*binomial(n,5) + 15*binomial(n,6) + 7*binomial(n,7) + binomial(n,8) (see our comment in A026729). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
a(n) = GegenbauerC(N, -n, -1/2) where N = 8 if 8Peter Luschny, May 10 2016

Extensions

More terms from Vladeta Jovovic, Oct 02 2000