cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005758 Number of partitions of n into parts of 12 kinds.

Original entry on oeis.org

1, 12, 90, 520, 2535, 10908, 42614, 153960, 521235, 1669720, 5098938, 14931072, 42124380, 114945780, 304351020, 784087848, 1970043621, 4837060800, 11626305640, 27398234760, 63388751544, 144156086776, 322590526350
Offset: 0

Views

Author

Keywords

Comments

Euler transform of A010851. - Alois P. Heinz, Oct 17 2008
Convolution square of A005758 = A006922: (1, 24, 324, 3200, 25650, ...). - Gary W. Adamson, Jun 13 2009

Examples

			G.f. = 1 + 12*x + 90*x^2 + 520*x^3 + 2535*x^4 + 10908*x^5 + 42614*x^6 + ...
G.f. = 1/q + 12*q + 90*q^3 + 520*q^5 + 2535*q^7 + 10908*q^9 + 42614*q^11 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

12th column of A144064.

Programs

  • Maple
    with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*12, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Oct 17 2008
  • Mathematica
    CoefficientList[Series[1/QPochhammer[x,x]^12,{x,0,30}],x]  (* Harvey P. Dale, Apr 21 2011 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / eta(x + x * O(x^n))^12, n))}; /* Michael Somos, Mar 07 2012 */

Formula

G.f.: Product ( 1 - x^k )^(-12).
Expansion of q^(1/2) * eta(q)^-12 in powers of q. - Michael Somos, Mar 07 2012
Convolution inverse of A000735.
a(n) ~ exp(2 * Pi * sqrt(2*n)) / (2^(15/4) * n^(15/4)). - Vaclav Kotesovec, Feb 28 2015
a(0) = 1, a(n) = (12/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 26 2017
G.f.: exp(12*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018