A005774 Number of directed animals of size n (k=1 column of A038622); number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, where s(0) = 2; also sum of row n+1 of array T in A026323.
0, 1, 3, 9, 26, 75, 216, 623, 1800, 5211, 15115, 43923, 127854, 372749, 1088283, 3181545, 9312312, 27287091, 80038449, 234988827, 690513030, 2030695569, 5976418602, 17601021837, 51869858544, 152951628725, 451271872701, 1332147482253
Offset: 0
Examples
G.f.: x + 3*x^2 + 9*x^3 + 26*x^4 + 75*x^5 + 216*x^6 + 623*x^7 + ...
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- P. Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
- D. Gouyou-Beauchamps, G. Viennot, Equivalence of the two-dimensional directed animal problem to a one-dimensional path problem, Adv. in Appl. Math. 9 (1988), no. 3, 334-357.
- Christian Krattenthaler, Daniel Yaqubi, Some determinants of path generating functions, II, arXiv:1802.05990 [math.CO], 2018; Adv. Appl. Math. 101 (2018), 232-265.
- Simon Plouffe, Approximations de Séries Génératrices et Quelques Conjectures, Dissertation, Université du Québec à Montréal, 1992.
- Simon Plouffe, Une méthode pour obtenir la fonction génératrice d'une série, FPSAC 1993, Florence. Formal Power Series and Algebraic Combinatorics.
Programs
-
Haskell
a005774 0 = 0 a005774 n = a038622 n 1 -- Reinhard Zumkeller, Feb 26 2013
-
Maple
seq( add(binomial(i,k+1)*binomial(i-k,k), k=0..floor(i/2)), i=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001 seq(simplify(GegenbauerC(n-2,-n,-1/2) + GegenbauerC(n-1,-n,-1/2)), n=0..27); # Peter Luschny, May 12 2016
-
Mathematica
CoefficientList[Series[(1-x-Sqrt[1-2x-3x^2])/(x(1-3x+Sqrt[1-2x-3x^2])),{x,0,30}],x] (* Harvey P. Dale, Sep 20 2011 *) RecurrenceTable[{a[0]==0, a[1]==1,a[n]==(2n(n+1)a[n-1]+3n(n-1)a[n-2])/ ((n+2)(n-1))},a,{n,30}] (* Harvey P. Dale, Nov 09 2012 *)
-
PARI
s=[0,1]; {A005774(n)=k=(2*(n+2)*(n+1)*s[2]+3*(n+1)*n*s[1])/((n+3)*n); s[1]=s[2]; s[2]=k; k}
-
PARI
{a(n) = if( n<2, n>0, (2 * (n+1) * n *a(n-1) + 3 * (n-1) * n * a(n-2)) / (n+2) / (n-1))}; /* Michael Somos, May 01 2003 */
Formula
Inverse binomial transform of [ 0, 1, 5, 21, 84, ... ] (A002054). - John W. Layman
D-finite with recurrence (n+2)*(n-1)*a(n) = 2*n*(n+1)*a(n-1) + 3*n*(n-1)*a(n-2) for all n in Z. - Michael Somos, May 01 2003
E.g.f.: exp(x)*(BesselI(1, 2*x)+BesselI(2, 2*x)). - Vladeta Jovovic, Jan 01 2004
G.f.: (1-x-sqrt(1-2x-3x^2))/(x(1-3x+sqrt(1-2x-3x^2))); a(n)= Sum_{k=0..n} C(k+1, n-k+1)*C(n, k)*k/(k+1); a(n) = Sum_{k=0..n} C(n, k)*C(k, floor((k-1)/2)). - Paul Barry, May 12 2005
Starting (1, 3, 9, 26, ...) = binomial transform of A026010: (1, 2, 4, 7, 14, 25, 50, 91, ...). - Gary W. Adamson, Oct 22 2007
a(n)*(2+n) = (4+4*n)*a(n-1) - n*a(n-2) + (12-6*n)*a(n-3). - Simon Plouffe, Feb 09 2012
a(n) ~ 3^(n+1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Mar 10 2014
0 = a(n)*(+36*a(n+1) + 18*a(n+2) - 96*a(n+3) + 30*a(n+4)) + a(n+1)*(-6*a(n+1) + 49*a(n+2) - 26*a(n+3) + 3*a(n+4)) + a(n+2)*(+15*a(n+3) - 8*a(n+4)) + a(n+3)*(a(n+4)) if n >= 0. - Michael Somos, Aug 06 2014
a(n) = GegenbauerC(n-2,-n,-1/2) + GegenbauerC(n-1,-n,-1/2). - Peter Luschny, May 12 2016
Extensions
Further descriptions from Clark Kimberling
Comments