cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005790 4-dimensional Catalan numbers.

Original entry on oeis.org

1, 1, 14, 462, 24024, 1662804, 140229804, 13672405890, 1489877926680, 177295473274920, 22661585038594320, 3073259571003214320, 438091463242348309440, 65166105157299311029200, 10056663345892631910888600, 1602608179958939072505281850, 262708662267696303439658400600
Offset: 0

Views

Author

Keywords

Comments

Number of standard tableaux of shape (n,n,n,n). - Emeric Deutsch, May 13 2004
The prime terms (as defined in A268538) are 1, 1, 10, 320, 16764, 1171355, 99315236, 9691755128, 1053114415100, ... - R. J. Mathar, Feb 27 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Snover, Stephen L.; Troyer, Stephanie F.; A four-dimensional Catalan formula. Proceedings of the Nineteenth Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1989). Congr. Numer. 75 (1990), 123-126.

Crossrefs

A row of A060854.
Cf. A000108 (Catalan numbers), A005789, A005791.

Programs

  • Magma
    [12*Factorial(4*n)/(Factorial(n)*Factorial(n+1)*Factorial(n+2) *Factorial(n+3)): n in [0..20]]; // Vincenzo Librandi, Nov 23 2018
    
  • Maple
    a:= n-> (4*n)! * mul(i!/(4+i)!, i=0..n-1):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 25 2012
  • Mathematica
    Table[12*(4*n)!/(n!*(n+1)!*(n+2)!*(n+3)!), {n, 0, 20}] (* Vaclav Kotesovec, Nov 18 2016 *)
  • PARI
    vector(20, n, n--; 12*(4*n)!/(n!*(n+1)!*(n+2)!*(n+3)!)) \\ G. C. Greubel, Nov 23 2018
    
  • Sage
    [12*factorial(4*n)/(factorial(n)*factorial(n+1)*factorial(n+2) *factorial(n+3)) for n in range(20)] # G. C. Greubel, Nov 23 2018

Formula

a(n) = 12*(4*n)!/(n! *(n+1)! *(n+2)! *(n+3)!).
G.f.: 4_F_3 ( [ 1, 3/2, 5/4, 7/4 ]; [ 3, 4, 5 ]; 256 x ).
a(n) ~ 3*2^(8*n+3/2)/(Pi^(3/2)*n^(15/2)). - Vaclav Kotesovec, Nov 18 2016
E.g.f.: 3F3(1/4,1/2,3/4; 2,3,4; 256*x) - 1. - Ilya Gutkovskiy, Oct 13 2017
(n+3)*(n+2)*(n+1)*a(n) -8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Mar 04 2018

Extensions

a(0)=1 prepended by Seiichi Manyama, Nov 23 2018