cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A104012 Indices of centered dodecahedral numbers (A005904) which are semiprimes (A001358).

Original entry on oeis.org

1, 2, 3, 5, 6, 11, 14, 15, 21, 26, 30, 35, 36, 44, 54, 63, 69, 74, 81, 114, 128, 131, 135, 138, 153, 165, 168, 191, 194, 209, 216, 224, 228, 231, 239, 261, 270, 303, 315, 321, 323, 326, 330, 336, 345, 363, 380, 384, 398, 404, 410, 411, 414, 429, 440, 443, 455, 468, 470
Offset: 1

Views

Author

Jonathan Vos Post, Feb 24 2005

Keywords

Comments

Because the cubic polynomial for centered dodecahedral numbers factors into n time an irreducible quadratic, the dodecahedral numbers can never be prime, but can be semiprime iff (2*n+1) is prime and (5*n^2+5*n+1) is prime. Centered dodecahedral numbers (A005904) are not to be confused with dodecahedral numbers (A006566) = n(3n-1)(3n-2)/2, nor with rhombic dodecahedral numbers (A005917).
Intersection of A005097 and A090563. - Michel Marcus, Apr 30 2016

Examples

			a(1) = 1 because A005904(1) = 33 = 3 * 11, which is semiprime.
a(2) = 2 because A005904(2) = 155 = 5 * 31, which is semiprime.
a(3) = 3 because A005904(3) = 427 = 7 * 61, which is semiprime.
a(4) = 5 because A005904(5) = 1661 = 11 * 151.
194 is in this sequence because A005904(194) = 73579739 = 389 * 189151, which is semiprime.
		

Crossrefs

Programs

  • PARI
    isok(n) = isprime(2*n+1) && isprime(5*n^2+5*n+1); \\ Michel Marcus, Apr 30 2016

Formula

n such that A001222(A005904(n)) = 2. n such that Bigomega((2*n+1)*(5*n^2 + 5*n + 1)) is 2. n such that A104011(n) = 2.

A104011 Number of prime factors (with multiplicity) of centered dodecahedral numbers (A005904).

Original entry on oeis.org

0, 2, 2, 2, 3, 2, 2, 3, 3, 3, 4, 2, 4, 4, 2, 2, 3, 3, 3, 3, 3, 2, 4, 3, 3, 3, 2, 4, 4, 3, 2, 6, 3, 3, 4, 2, 2, 5, 3, 3, 6, 3, 4, 3, 2, 4, 4, 4, 3, 4, 3, 3, 4, 3, 2, 3, 3, 4, 5, 4, 3, 3, 4, 2, 5, 3, 3, 7, 3, 2, 3, 3, 4, 4, 2, 3, 5, 4, 3, 3, 3, 2, 4, 3, 4, 4, 4, 4, 3, 4, 3, 4, 4, 3, 5, 3, 3, 6, 3, 3
Offset: 0

Views

Author

Jonathan Vos Post, Feb 24 2005

Keywords

Comments

When a(n) = 2, n is a term of A104012: indices of centered dodecahedral numbers (A005904) which are semiprimes.

Examples

			a(9) = 3 because A005904(9) = 8569 = 11 * 19 * 41, which has 3 prime factors (which happen to have the same number of digits).
a(18) = 3 because A005904(18) = 63307 = 29 * 37 * 59.
a(96) = 3 because A005904(96) = 8986273 = 101 * 193 * 461.
a(126) = 5 because A005904(126) = 20242783 = 11 * 23 * 29 * 31 * 89, which has 5 prime factors (which happen to have the same number of digits).
		

Crossrefs

Programs

  • Mathematica
    PrimeOmega[(2*n+1)*(5*n^2+5*n+1)] /. n -> Range[0, 99] (* Giovanni Resta, Jun 17 2016 *)

Formula

a(n) = A001222(A005904(n)).
a(n) = Bigomega((2*n+1)*(5*n^2 + 5*n + 1)).

Extensions

A missing term inserted by Giovanni Resta, Jun 17 2016

A329658 Numbers that are sums of consecutive centered dodecahedral numbers (A005904).

Original entry on oeis.org

1, 33, 34, 155, 188, 189, 427, 582, 615, 616, 909, 1336, 1491, 1524, 1525, 1661, 2570, 2743, 2997, 3152, 3185, 3186, 4215, 4404, 5313, 5740, 5895, 5928, 5929, 6137, 6958, 8569, 8619, 9528, 9955, 10110, 10143, 10144, 10352, 11571, 13095, 14706, 14756, 15203, 15665, 16092
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 18 2019

Keywords

Crossrefs

A362863 Centered hecatonicosachoral numbers.

Original entry on oeis.org

1, 1441, 11521, 44641, 122401, 273601, 534241, 947521, 1563841, 2440801, 3643201, 5243041, 7319521, 9959041, 13255201, 17308801, 22227841, 28127521, 35130241, 43365601, 52970401, 64088641, 76871521, 91477441, 108072001, 126828001, 147925441, 171551521, 197900641
Offset: 1

Views

Author

Léo Cymrot Cymbalista, May 06 2023

Keywords

Comments

A hecatonicosachoral number is a centered figurate number that represents a hecatonicosachoron, which is a four-dimensional regular polytope composed of 120 cells.
One of the 6 centered regular polichoral (centered pentachoral, centered hexadecachoral, centered octachoral, centered icositetrachoral, centered hexacosichoral and centered hecatonicosachoral) numbers.

Crossrefs

Cf. A005891 (2D), A005904 (3D), A006322, A151989.

Programs

  • Mathematica
    Table[300*n^4 - 600*n^3 + 420*n^2 - 120*n + 1, {n, 1, 100}]

Formula

a(n) = 300*n^4 - 600*n^3 + 420*n^2 - 120*n + 1.
a(n) = 1440*A006322(n-1) + 1 for n > 1.
a(n) = 288*(A151989(n-1)-1)/25 + 1.
G.f.: x*(1 + 1436*x + 4326*x^2 + 1436*x^3 + x^4)/(1 - x)^5. - Stefano Spezia, May 12 2023

A269237 a(n) = (n + 1)^2*(5*n^2 + 10*n + 2)/2.

Original entry on oeis.org

1, 34, 189, 616, 1525, 3186, 5929, 10144, 16281, 24850, 36421, 51624, 71149, 95746, 126225, 163456, 208369, 261954, 325261, 399400, 485541, 584914, 698809, 828576, 975625, 1141426, 1327509, 1535464, 1766941, 2023650, 2307361, 2619904, 2963169, 3339106, 3749725, 4197096
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2016

Keywords

Comments

Partial sums of centered dodecahedral numbers (A005904).

Crossrefs

Programs

  • Magma
    [(n + 1)^2*(5*n^2 + 10*n + 2)/2 : n in [0..50]]; // Wesley Ivan Hurt, Oct 15 2017
  • Maple
    A269237:=n->(n + 1)^2*(5*n^2 + 10*n + 2)/2: seq(A269237(n), n=0..50); # Wesley Ivan Hurt, Oct 15 2017
  • Mathematica
    Table[(n + 1)^2 ((5 n^2 + 10 n + 2)/2), {n, 0, 35}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {1, 34, 189, 616, 1525}, 36]
  • PARI
    x='x+O('x^99); Vec((1+29*x+29*x^2+x^3)/(1-x)^5) \\ Altug Alkan, Apr 10 2016
    

Formula

G.f.: (1 + 29*x + 29*x^2 + x^3)/(1 - x)^5.
E.g.f.: exp(x)*(2 + 66*x + 122*x^2 + 50*x^3 + 5*x^4)/2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
Sum_{n>=0} 1/a(n) = (5 - Pi^2 - sqrt(15)*Pi*cot(sqrt(3/5)*Pi))/9 = 1.0377796966... . - Vaclav Kotesovec, Apr 10 2016

A271532 a(n) = (-1)^n*(n + 1)*(5*n^2 + 10*n + 1).

Original entry on oeis.org

1, -32, 123, -304, 605, -1056, 1687, -2528, 3609, -4960, 6611, -8592, 10933, -13664, 16815, -20416, 24497, -29088, 34219, -39920, 46221, -53152, 60743, -69024, 78025, -87776, 98307, -109648, 121829, -134880, 148831, -163712, 179553, -196384, 214235, -233136, 253117, -274208, 296439
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2016

Keywords

Comments

Alternating sum of centered dodecahedral numbers (A005904).
Without signs and up to offset, this is row 5 of the array A284873. - Andrey Zabolotskiy, Oct 10 2017

Crossrefs

Programs

  • Mathematica
    Table[(-1)^n (n + 1) (5 n^2 + 10 n + 1), {n, 0, 38}]
    LinearRecurrence[{-4, -6, -4, -1}, {1, -32, 123, -304}, 39]
  • PARI
    a(n)=(-1)^n*(n+1)*(5*n^2+10*n+1) \\ Charles R Greathouse IV, Jul 26 2016
  • Python
    for n in range(0,10**3):print((-1)**n*(n+1)*(5*n**2+10*n+1)) # Soumil Mandal, Apr 10 2016
    

Formula

G.f.: (1 - 28*x + x^2)/(1 + x)^4.
E.g.f.: exp(-x)*(1 - 31*x + 30*x^2 - 5*x^3).
a(n) = -4*a(n-1) - 6*a(n-2) - 4*a(n-3) - a(n-4).

A284742 Centered Platonic numbers.

Original entry on oeis.org

1, 5, 7, 9, 13, 15, 25, 33, 35, 55, 63, 69, 91, 121, 129, 147, 155, 189, 195, 231, 295, 309, 341, 377, 425, 427, 559, 561, 575, 589, 791, 833, 855, 909, 923, 1035, 1159, 1241, 1325, 1415, 1561, 1661, 1665, 1729, 2047, 2057, 2059, 2331, 2511, 2625, 2743, 2869, 3025, 3059, 3303, 3605, 3871, 3925, 4089, 4215, 4255
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 01 2017

Keywords

Comments

Union of centered tetrahedral numbers (A005894), centered octahedral numbers (A001845), centered cube numbers (A005898), centered icosahedral numbers (A005902) and centered dodecahedral numbers (A005904).

Crossrefs

Programs

  • Mathematica
    nn = 18; t1 = Table[(2 n + 1) (n^2 + n + 3)/3, {n, 0, nn}]; t2 = Table[(2 n + 1) (2 n^2 + 2 n + 3)/3, {n, 0, nn}]; t3 = Table[n^3 + (n + 1)^3, {n, 0, nn}]; t4 = Table[(2 n + 1) (5 n^2 + 5 n + 3)/3, {n, 0, nn}]; t5 = Table[(2 n + 1) (5 n^2 + 5 n + 1), {n, 0,  nn}]; Select[Union[t1, t2, t3, t4, t5], # <= t1[[-1]] &]
Showing 1-7 of 7 results.