A005914 Number of points on surface of hexagonal prism: 12*n^2 + 2 for n > 0 (coordination sequence for W(2)).
1, 14, 50, 110, 194, 302, 434, 590, 770, 974, 1202, 1454, 1730, 2030, 2354, 2702, 3074, 3470, 3890, 4334, 4802, 5294, 5810, 6350, 6914, 7502, 8114, 8750, 9410, 10094, 10802, 11534, 12290, 13070, 13874, 14702, 15554, 16430, 17330, 18254, 19202, 20174, 21170
Offset: 0
References
- Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th Ed., 1994, TYPIX search code (229) cI2.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Ovidiu Bagdasar, On Some Functions Involving the lcm and gcd of Integer Tuples, Scientific Publications of the State University of Novi Pazar, Appl. Maths. Inform. and Mech., Vol. 6, No. 2 (2014), pp. 91-100.
- Ralf W. Grosse-Kunstleve, Coordination Sequences and Encyclopedia of Integer Sequences, 1996.
- Ralf W. Grosse-Kunstleve, G. O. Brunner and N. J. A. Sloane, Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites, Acta Cryst., A52 (1996), pp. 879-889.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- Claudio de J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq., Vol. 16 (2013), Article 13.5.7.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Boon K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem., Vol. 24 (1985), pp. 4545-4558.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Maple
A005914:=-(z+1)*(z**2+10*z+1)/(z-1)**3; # Simon Plouffe in his 1992 dissertation.
-
Mathematica
Table[If[n == 0, 1, 12*n^2 + 2], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *) Join[{1},LinearRecurrence[{3,-3,1},{14,50,110},50]] (* Harvey P. Dale, Oct 09 2012 *)
-
PARI
a(n)=12*n^2+2 \\ Charles R Greathouse IV, Jan 31 2012
Formula
G.f.: (1+x)*(1+10*x+x^2)/(1-x)^3. - Simon Plouffe (see MAPLE line)
a(n) = (2n-1)^2 + (2n)^2 + (2n+1)^2 for n > 0. - Bruno Berselli, Jan 30 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=14, a(2)=50, a(3)=110. - Harvey P. Dale, Oct 09 2012
E.g.f.: exp(x)*(12*x^2 + 12*x + 2) - 1. - Alois P. Heinz, Sep 10 2013
From Bruce J. Nicholson, Jan 19 2019: (Start)
Sum_{i=1..n} a(i) = A005917(n+1).
From Amiram Eldar, Jan 27 2022: (Start)
Sum_{n>=0} 1/a(n) = ((Pi/sqrt(6))*coth(Pi/sqrt(6)) + 3)/4.
Sum_{n>=0} (-1)^n/a(n) = ((Pi/sqrt(6))*cosech(Pi/sqrt(6)) + 3)/4. (End)
Comments