A005915 Hexagonal prism numbers: a(n) = (n + 1)*(3*n^2 + 3*n + 1).
1, 14, 57, 148, 305, 546, 889, 1352, 1953, 2710, 3641, 4764, 6097, 7658, 9465, 11536, 13889, 16542, 19513, 22820, 26481, 30514, 34937, 39768, 45025, 50726, 56889, 63532, 70673, 78330, 86521, 95264, 104577, 114478, 124985, 136116, 147889, 160322, 173433, 187240
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), pp. 4545-4558.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(n + 1)*(3*n^2 + 3*n + 1): n in [0..50]]; // Vincenzo Librandi, May 16 2011
-
Maple
A005915:=(1+10*z+7*z**2)/(z-1)**4; # Conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
Table[(n+1)(3n^2+3n+1),{n,0,50}] (* Harvey P. Dale, Mar 31 2011 *) LinearRecurrence[{4,-6,4,-1},{1,14,57,148},50] (* Harvey P. Dale, Jun 25 2011 *)
-
PARI
a(n) = (n + 1)*(3*n^2 + 3*n + 1);
Formula
a(n) = (n+1)^3 + 6*(n*(n+1)*(2*n+1)/6). - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=14, a(2)=57, a(3)=148. - Harvey P. Dale, Jun 25 2011
G.f.: (1+10*x+7*x^2)/(1-x)^4. - Harvey P. Dale, Jun 25 2011
Equals row sums of triangle A143804 and binomial transform of [1, 13, 30, 18, 0, 0, 0, ...]. - Gary W. Adamson, Sep 01 2008
2*a(n+1) = A213829(n). - Clark Kimberling, Jul 04 2012
E.g.f.: exp(x)*(1 + x)*(1 + 12*x + 3*x^2). - Elmo R. Oliveira, Aug 04 2025
Extensions
More terms from James Sellers, Dec 24 1999
Comments