A005920 Tricapped prism numbers.
1, 9, 33, 82, 165, 291, 469, 708, 1017, 1405, 1881, 2454, 3133, 3927, 4845, 5896, 7089, 8433, 9937, 11610, 13461, 15499, 17733, 20172, 22825, 25701, 28809, 32158, 35757, 39615, 43741, 48144, 52833, 57817, 63105, 68706, 74629, 80883, 87477, 94420
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985),4545-4558.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Haskell
a005920 n = (n * (n * (3 * n + 7) + 6) + 2) `div` 2 -- Reinhard Zumkeller, Oct 03 2012
-
Magma
[(3*n^3+7*n^2+6*n+2)/2 : n in [0..50]]; // Wesley Ivan Hurt, May 05 2021
-
Maple
a:=n->(3*n^3+7*n^2+6*n+2)/2: seq(a(n),n=0..60); A005920:=(1+5*z+3*z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
CoefficientList[ Series[(1+5x+3x^2)/(1-x)^4, {x, 0, 39}], x] (* Jean-François Alcover, Dec 02 2011, after Simon Plouffe *) LinearRecurrence[{4,-6,4,-1},{1,9,33,82},40] (* Harvey P. Dale, Sep 25 2012 *)
-
PARI
a(n)=n*(3*n^2+7*n+6)/2+1 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = (1/2) * (3*n^3 + 7*n^2 + 6*n + 2). - Ralf Stephan, Apr 20 2004
a(0)=1, a(1)=9, a(2)=33, a(3)=82, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Sep 25 2012
E.g.f.: exp(x)*(2 + 16*x + 16*x^2 + 3*x^3)/2. - Stefano Spezia, Jun 10 2022
Extensions
More terms from Emeric Deutsch, May 09 2004
Comments