A006007 4-dimensional analog of centered polygonal numbers: a(n) = n(n+1)*(n^2+n+4)/12.
0, 1, 5, 16, 40, 85, 161, 280, 456, 705, 1045, 1496, 2080, 2821, 3745, 4880, 6256, 7905, 9861, 12160, 14840, 17941, 21505, 25576, 30200, 35425, 41301, 47880, 55216, 63365, 72385, 82336, 93280, 105281, 118405, 132720, 148296, 165205, 183521
Offset: 0
References
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..710
- Per Alexandersson, Sam Hopkins, and Gjergji Zaimi, Restricted Birkhoff polytopes and Ehrhart period collapse, arXiv:2206.02276 [math.CO], 2022.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
- D.-N. Verma, Towards Classifying Finite Point-Set Configurations, 1997, Unpublished. [Scanned copy of annotated version of preprint given to me by the author in 1997. - _N. J. A. Sloane_, Oct 04 2021]
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Magma
[n*(n+1)*(n^2+n+4)/12: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
-
Mathematica
f[n_]:=n^3;lst={};s=0;Do[s+=(f[n]+f[n+1]+f[n+2]);AppendTo[lst,s/9],{n,0,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 03 2009 *) Table[2Binomial[n+2,4]+Binomial[n+1,2],{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,5,16,40},40] (* Harvey P. Dale, Sep 30 2011 *)
-
PARI
a(n)=n*(n+1)*(n^2+n+4)/12 \\ Charles R Greathouse IV, Sep 24 2015
Formula
G.f.: (1+x^2)/(1-x)^5.
a(n) = 2*binomial(n + 2, 4) + binomial(n + 1, 2).
a(0)=0, a(1)=1, a(2)=5, a(3)=16, a(4)=40, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Sep 30 2011
For n>0, a(n) = (A000217(n-1)^2 + A000217(n)^2 + A000217(n+1)^2 - 1)/9. - Richard R. Forberg, Dec 25 2013
Sum_{n>=1} 1/a(n) = 15/4 - tanh(sqrt(15)*Pi/2)*Pi*sqrt(3/5). - Amiram Eldar, Aug 23 2022
E.g.f.: exp(x)*(12 + 48*x + 42*x^2 + 12*x^3 + x^4)/12. - Stefano Spezia, Aug 31 2023
Extensions
More terms from Henry Bottomley, Apr 24 2001