cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A351153 Triangle read by rows: T(n, k) = n*(k - 1) - k*(k - 3)/2 with 0 < k <= n.

Original entry on oeis.org

1, 1, 3, 1, 4, 6, 1, 5, 8, 10, 1, 6, 10, 13, 15, 1, 7, 12, 16, 19, 21, 1, 8, 14, 19, 23, 26, 28, 1, 9, 16, 22, 27, 31, 34, 36, 1, 10, 18, 25, 31, 36, 40, 43, 45, 1, 11, 20, 28, 35, 41, 46, 50, 53, 55, 1, 12, 22, 31, 39, 46, 52, 57, 61, 64, 66, 1, 13, 24, 34, 43, 51, 58, 64, 69, 73, 76, 78
Offset: 1

Views

Author

Stefano Spezia, Feb 02 2022

Keywords

Comments

Except for the number 2, it contains all the positive integers.

Examples

			Triangle begins:
  1;
  1, 3;
  1, 4,  6;
  1, 5,  8, 10;
  1, 6, 10, 13, 15;
  1, 7, 12, 16, 19, 21;
  1, 8, 14, 19, 23, 26, 28;
  ...
		

Crossrefs

Cf. A000012 (1st column), A000217 (leading diagonal), A005843 (3rd column), A006007 (sum of the first n rows), A006527 (row sums).

Programs

  • Mathematica
    Flatten[Table[n(k-1)-k(k-3)/2,{n,12},{k,n}]]

Formula

T(n, k) = 1 + Sum_{i=1..k-1} (n - i + 1).
From R. J. Mathar, Feb 07 2022: (Start)
G.f.: x*y*(1 - x + y*x^2 + y^2*x^3)/((1 - x)^2*(1 - y*x)^3).
T(n, k) = 1 + A141418(n+1, k-1) = 1 + A087401(n+1, k-1). (End)

A132366 Partial sum of centered tetrahedral numbers A005894.

Original entry on oeis.org

1, 6, 21, 56, 125, 246, 441, 736, 1161, 1750, 2541, 3576, 4901, 6566, 8625, 11136, 14161, 17766, 22021, 27000, 32781, 39446, 47081, 55776, 65625, 76726, 89181, 103096, 118581, 135750, 154721, 175616, 198561, 223686, 251125, 281016, 313501, 348726, 386841
Offset: 0

Views

Author

Jonathan Vos Post, Nov 09 2007

Keywords

Comments

From Robert A. Russell, Oct 09 2020: (Start)
a(n-1) is the number of achiral colorings of the 5 tetrahedral facets (or vertices) of a regular 4-dimensional simplex using n or fewer colors. An achiral arrangement is identical to its reflection. The 4-dimensional simplex is also called a 5-cell or pentachoron. Its Schläfli symbol is {3,3,3}.
There are 60 elements in the automorphism group of the 4-dimensional simplex that are not in its rotation group. Each is an odd permutation of the vertices and can be associated with a partition of 5 based on the conjugacy class of the permutation. The first formula for a(n-1) is obtained by averaging their cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Partition Count Odd Cycle Indices
41 30 x_1x_4^1
32 20 x_2^1x_3^1
2111 10 x_1^3x_2^1 (End)

Crossrefs

Cf. A337895 (oriented), A000389(n+4) (unoriented), A000389 (chiral), A331353 (5-cell edges, faces), A337955 (8-cell vertices, 16-cell facets), A337958 (16-cell vertices, 8-cell facets), A338951 (24-cell), A338967 (120-cell, 600-cell).
a(n-1) = A325001(4,n).

Programs

  • Mathematica
    Do[Print[n, " ", (n^4 + 4 n^3 + 11 n^2 + 14 n + 6)/6 ], {n, 0, 10000}]
    Accumulate[Table[(2n+1)(n^2+n+3)/3,{n,0,40}]] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,6,21,56,125},40] (* Harvey P. Dale, Feb 26 2020 *)

Formula

a(n) = (n^4 + 4*n^3 + 11*n^2 + 14*n + 6)/6 = (n^2+2*n+6)*(n+1)^2/6.
G.f.: -(x+1)*(x^2+1) / (x-1)^5. - Colin Barker, May 04 2013
From Robert A. Russell, Oct 09 2020: (Start)
a(n-1) = n^2 * (5 + n^2) / 6.
a(n-1) = binomial(n+4,5) - binomial(n,5) = A000389(n+4) - A000389(n).
a(n-1) = 1*C(n,1) + 4*C(n,2) + 6*C(n,3) + 4*C(n,4), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
a(n-1) = 2*A000389(n+4) - A337895(n) = A337895(n) - 2*A000389(n) .
G.f. for a(n-1): x * (x+1) * (x^2+1) / (1-x)^5. (End)
From Amiram Eldar, Feb 14 2023: (Start)
Sum_{n>=0} 1/a(n) = Pi^2/5 + 3/25 - 3*Pi*coth(sqrt(5)*Pi)/(5*sqrt(5)).
Sum_{n>=0} (-1)^n/a(n) = Pi^2/10 - 3/25 + 3*Pi*cosech(sqrt(5)*Pi)/(5*sqrt(5)). (End)
a(n) = A006007(n) + A006007(n+1) = A002415(n) + A002415(n+2). - R. J. Mathar, Jun 05 2025

Extensions

Corrected offset, Mathematica program by Tomas J. Bulka (tbulka(AT)rodincoil.com), Sep 02 2009

A236770 a(n) = n*(n + 1)*(3*n^2 + 3*n - 2)/8.

Original entry on oeis.org

0, 1, 12, 51, 145, 330, 651, 1162, 1926, 3015, 4510, 6501, 9087, 12376, 16485, 21540, 27676, 35037, 43776, 54055, 66045, 79926, 95887, 114126, 134850, 158275, 184626, 214137, 247051, 283620, 324105, 368776, 417912, 471801, 530740, 595035, 665001, 740962
Offset: 0

Views

Author

Bruno Berselli, Jan 31 2014

Keywords

Comments

After 0, first trisection of A011779 and right border of A177708.

Crossrefs

Partial sums of A004188.
Cf. similar sequences on the polygonal numbers: A002817(n) = A000217(A000217(n)); A000537(n) = A000290(A000217(n)); A037270(n) = A000217(A000290(n)); A062392(n) = A000384(A000217(n)).
Cf. sequences of the form A000217(m)+k*A000332(m+2): A062392 (k=12); A264854 (k=11); A264853 (k=10); this sequence (k=9); A006324 (k=8); A006323 (k=7); A000537 (k=6); A006322 (k=5); A006325 (k=4), A002817 (k=3), A006007 (k=2), A006522 (k=1).

Programs

  • Magma
    [n*(n+1)*(3*n^2+3*n-2)/8: n in [0..40]];
  • Mathematica
    Table[n (n + 1) (3 n^2 + 3 n - 2)/8, {n, 0, 40}]
    LinearRecurrence[{5,-10,10,-5,1},{0,1,12,51,145},40] (* Harvey P. Dale, Aug 22 2016 *)
  • PARI
    for(n=0, 40, print1(n*(n+1)*(3*n^2+3*n-2)/8", "));
    

Formula

G.f.: x*(1 + 7*x + x^2)/(1 - x)^5.
a(n) = a(-n-1) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A000326(A000217(n)).
a(n) = A000217(n) + 9*A000332(n+2).
Sum_{n>=1} 1/a(n) = 2 + 4*sqrt(3/11)*Pi*tan(sqrt(11/3)*Pi/2) = 1.11700627139319... . - Vaclav Kotesovec, Apr 27 2016

A383834 Sum of the legs of the unique primitive Pythagorean triple whose inradius is A000217(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

Original entry on oeis.org

1, 7, 31, 97, 241, 511, 967, 1681, 2737, 4231, 6271, 8977, 12481, 16927, 22471, 29281, 37537, 47431, 59167, 72961, 89041, 107647, 129031, 153457, 181201, 212551, 247807, 287281, 331297, 380191, 434311, 494017, 559681, 631687, 710431, 796321, 889777, 991231, 1101127, 1219921, 1348081
Offset: 0

Views

Author

Keywords

Examples

			For n=1, the short leg is A002061(1) = 3 and the long leg is A212135(2) = 4 so the sum of the legs is then a(1) = 3 + 4 = 7.
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.

Crossrefs

Programs

  • Mathematica
    a=Table[(n(n+1))/2,{n,0,40}];Apply[Join,Map[{2#^2+4#+1}&,a]]

Formula

a(n) = 2*(A000217(n))^2 + 4*A000217(n) + 1.
a(n) = 6*A006007(n) + 1

A047662 Square array a(n,k) read by antidiagonals: a(n,1)=n, a(1,k)=k, a(n,k)=a(n-1,k-1)+a(n-1,k)+a(n,k-1)+1.

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 4, 12, 12, 4, 5, 20, 31, 20, 5, 6, 30, 64, 64, 30, 6, 7, 42, 115, 160, 115, 42, 7, 8, 56, 188, 340, 340, 188, 56, 8, 9, 72, 287, 644, 841, 644, 287, 72, 9, 10, 90, 416, 1120, 1826, 1826, 1120, 416, 90, 10, 11, 110, 579, 1824, 3591
Offset: 1

Views

Author

Keywords

Examples

			The array begins:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, ...
3, 12, 31, 64, 115, 188, 287, 416, 579, 780, 1023, 1312, ...
4, 20, 64, 160, 340, 644, 1120, 1824, 2820, 4180, 5984, 8320, ...
5, 30, 115, 340, 841, 1826, 3591, 6536, 11181, 18182, 28347, 42652, ...
6, 42, 188, 644, 1826, 4494, 9912, 20040, 37758, 67122, 113652, 184652, ...
7, 56, 287, 1120, 3591, 9912, 24319, 54272, 112071, 216952, 397727, 696032, ...
8, 72, 416, 1824, 6536, 20040, 54272, 132864, 299208, 628232, 1242912, 2336672, ...
...
The first few antidiagonals are:
1,
2, 2,
3, 6, 3,
4, 12, 12, 4,
5, 20, 31, 20, 5,
6, 30, 64, 64, 30, 6,
7, 42, 115, 160, 115, 42, 7,
8, 56, 188, 340, 340, 188, 56, 8,
9, 72, 287, 644, 841, 644, 287, 72, 9,
10, 90, 416, 1120, 1826, 1826, 1120, 416, 90, 10,
...
		

Crossrefs

Rows give A037237, 4*A006007, A047661, A047663, A047664, main diagonal is A047665 (see also A001850).
See also A008288, A048776.

Programs

  • Maple
    A047662 := proc(n,k) option remember; if n = 1 then k; elif k = 1 then n; else A047662(n-1,k-1)+A047662(n,k-1)+A047662(n-1,k)+1; fi; end;
  • Mathematica
    a[n_, 1] := n; a[1, k_] := k; a[n_, k_] := a[n, k] = a[n-1, k-1] + a[n-1, k] + a[n, k-1] + 1; Table[ a[n-k+1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 13 2013 *)

Formula

a(n, k) =(A008288(n, k)-1)/2. Sum of antidiagonals is A048776.

A061316 a(n) = n*(n+1)*(n^2 + n + 4)/4.

Original entry on oeis.org

0, 3, 15, 48, 120, 255, 483, 840, 1368, 2115, 3135, 4488, 6240, 8463, 11235, 14640, 18768, 23715, 29583, 36480, 44520, 53823, 64515, 76728, 90600, 106275, 123903, 143640, 165648, 190095, 217155, 247008, 279840, 315843, 355215, 398160, 444888
Offset: 0

Views

Author

Henry Bottomley, Apr 24 2001

Keywords

Crossrefs

Programs

  • Maple
    a:=n->sum((n+j^3),j=0..n): seq(a(n),n=0..36); # Zerinvary Lajos, Jul 27 2006
    with(combinat):a:=n->sum(fibonacci(4,i), i=0..n): seq(a(n), n=0..36); # Zerinvary Lajos, Mar 20 2008
  • Mathematica
    s=0;lst={};Do[s+=n^3+n*2;AppendTo[lst,s],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 04 2009 *)
    Table[n(n+1)(n^2+n+4)/4,{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1}, {0,3,15,48,120},40] (* Harvey P. Dale, May 03 2011 *)
  • PARI
    a(n) = n*(n + 1)*(n^2 + n + 4)/4 \\ Harry J. Smith, Jul 21 2009

Formula

a(n) = n*(n+1)*(n^2 + n + 4)/4.
a(n) = A005563(A000217(n)) = 3*A006007(n) = A061314(n, 2).
a(0)=0, a(1)=3, a(2)=15, a(3)=48, a(4)=120, a(n) = 5a(n-1) - 10a(n-2) + 10a(n-3) - 5a(n-4) + a(n-5).
G.f.: (-3 (x + x^3))/(-1 + x)^5. - Harvey P. Dale, May 03 2011
Sum_{n>=1} 1/a(n) = 5/4 - tanh(sqrt(15)*Pi/2)*Pi/sqrt(15). - Amiram Eldar, Aug 20 2022
E.g.f.: exp(x)*x*(12 + 18*x + 8*x^2 + x^3)/4. - Stefano Spezia, Aug 31 2023

A153976 a(n) = n^3 + (n+2)^3.

Original entry on oeis.org

8, 28, 72, 152, 280, 468, 728, 1072, 1512, 2060, 2728, 3528, 4472, 5572, 6840, 8288, 9928, 11772, 13832, 16120, 18648, 21428, 24472, 27792, 31400, 35308, 39528, 44072, 48952, 54180, 59768, 65728, 72072, 78812, 85960, 93528, 101528, 109972, 118872, 128240
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n^3+(n+2)^3: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
    
  • Mathematica
    f[n_]:=n^3;lst={};Do[AppendTo[lst,(f[n]+f[n+2])],{n,0,6!}];lst
    Array[#^3+(#+2)^3&,40,0] (* or *) LinearRecurrence[{4,-6,4,-1},{8,28,72,152},40] (* Harvey P. Dale, Aug 02 2011 *)
  • Python
    def a(n): return n**3 + (n+2)**3
    print([a(n) for n in range(40)]) # Michael S. Branicky, Aug 28 2021

Formula

For n>3, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Aug 02 2011
G.f.: 4*( 2-x+2*x^2 ) / (x-1)^4 . - R. J. Mathar, Apr 11 2016
a(n) = 4*A229183(n+1). - R. J. Mathar, Apr 11 2016

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Apr 26 2011

A153978 a(n) = n*(n-1)*(n+1)*(3*n-2)/12.

Original entry on oeis.org

0, 2, 14, 50, 130, 280, 532, 924, 1500, 2310, 3410, 4862, 6734, 9100, 12040, 15640, 19992, 25194, 31350, 38570, 46970, 56672, 67804, 80500, 94900, 111150, 129402, 149814, 172550, 197780, 225680, 256432, 290224, 327250, 367710, 411810, 459762
Offset: 1

Views

Author

Keywords

Comments

Partial sums of A011379.
Antidiagonal sums of the convolution array A213819. - Clark Kimberling, Jul 04 2012

Crossrefs

Programs

  • Mathematica
    With[{r=Range[0,50]},Accumulate[r^2+r^3]] (* Harvey P. Dale, Jan 16 2011 *)
    Rest[CoefficientList[Series[-2 x^2 * (2 x + 1)/(x - 1)^5, {x, 0, 40}], x]] (* Vincenzo Librandi, Jun 30 2014 *)
    LinearRecurrence[{5,-10,10,-5,1}, {0,2,14,50,130}, 25] (* G. C. Greubel, Sep 01 2016 *)
  • PARI
    concat(0, Vec(-2*x^2*(2*x+1)/(x-1)^5 + O(x^100))) \\ Colin Barker, Jun 28 2014
    
  • PARI
    a(n) = n*(n-1)*(n+1)*(3*n-2)/12 \\ Charles R Greathouse IV, Sep 01 2016

Formula

a(n) = 2 * A001296(n-1) = (n-1)*n*(n+1)*(3*n-2)/12 (n>0). - Bruno Berselli, Apr 21 2010
a(n) = Sum_{i=1..n-1} binomial(i+1,i)*i^2. - Enrique Pérez Herrero, Jun 28 2014
G.f.: 2*x^2*(2*x+1) / (1 - x)^5. - Colin Barker, Jun 28 2014
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4. - Vincenzo Librandi, Jun 30 2014
a(n) = Sum_{k=1..n-1}k*((n-1)*n/2 + k) for n > 1. - J. M. Bergot, Feb 16 2018
From Amiram Eldar, Aug 23 2022: (Start)
Sum_{n>=2} 1/a(n) = 141/5 - 9*sqrt(3)*Pi/5 - 81*log(3)/5.
Sum_{n>=2} (-1)^n/a(n) = 18*sqrt(3)*Pi/5 + 48*log(2)/5 - 129/5. (End)

Extensions

Edited by Bruno Berselli, Jun 15 2010
Simpler definition as suggested by Wesley Ivan Hurt, Jun 29 2014

A061315 Array read by antidiagonals: T(n,k)=T(n,k-1)*(T(n,k-1)+k-1)/k with T(n,1)=n.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 5, 6, 4, 1, 10, 16, 10, 5, 1, 28, 76, 40, 15, 6, 1, 154, 1216, 430, 85, 21, 7, 1, 3520, 247456, 37324, 1870, 161, 28, 8, 1, 1551880
Offset: 1

Views

Author

Henry Bottomley, Apr 24 2001

Keywords

Comments

Not always an integer

Examples

			1,1,1,1,1,1,1,1,1,1,...
2,3,5,10,28,154,3520,1551880,267593772160,7160642690122633501504,...
3,6,16,76,1216,247456,61235956672/7,468730299066952899064/49,...
4,10,40,430,37324,232211266,7703153350084336,7417321441864447837991470393906,
5,15,85,1870,700876,81871778626,957569733696568731376,...
6,21,161,6601,8719921,12672844307641,22942997549397847673832961,...
7,28,280,19810,78503068,1027122012987994,...
		

Crossrefs

Rows include A000012 and A003504. Columns include A000027, A000217, A006007, A061319 and A061321.

Formula

a(n) =A061314(n, k-1)/k

A061318 Column 3 of A061314.

Original entry on oeis.org

0, 4, 40, 304, 1720, 7480, 26404, 79240, 209304, 499140, 1095160, 2242504, 4332640, 7966504, 14036260, 23829040, 39156304, 62512740, 97268904, 147902080, 220270120, 321933304, 462529540, 654208504, 912130600, 1255036900, 1705896504, 2292638040, 3048972304, 4015313320
Offset: 0

Views

Author

Henry Bottomley, Apr 24 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-4x (1+x+22x^2+22x^3+22x^4+x^5+x^6)/(x-1)^9,{x,0,30}],x] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,4,40,304,1720,7480,26404,79240,209304},30] (* Harvey P. Dale, Jul 04 2023 *)

Formula

a(n) = A061316(n) + A006007(n)^2 = 4*A061319(n).
G.f. -4*x*(1+x+22*x^2+22*x^3+22*x^4+x^5+x^6)/(x-1)^9. - R. J. Mathar, Aug 11 2012

Extensions

a(25)-a(29) from Stefano Spezia, Aug 31 2023
Showing 1-10 of 18 results. Next